Log in

Propagation of infinitesimal thermo-mechanical waves during the finite-deformation loading of a viscoelastic material: general theory

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the theory of propagation of infinitesimal thermo-mechanical waves in a special class of nonlinear viscoelastic materials under homogeneous and inhomogeneous finite static and time-varying deformations. These results are based on a thermodynamically consistent finite-deformation nonlinear viscoelastic model that reduces to a general linear viscoelastic model of integral form. On a thermo-mechanically deforming body, we impose a thermo-mechanical perturbation history and obtain the equations to solve for the perturbation parameters from the constitutive model and the balance laws. We use these equations to study the characteristics of different perturbations. We develop the special equations for both time-harmonic and time-dam** plane waves for homogeneous pre-loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M.A.: Mechanics of Incremental Deformation (Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamics Foundation and Applications to Finite Strain). Wiley, New York (1965)

    Google Scholar 

  2. Boulanger P., Hayes M.A.: Bivectors and Waves in Mechanics and Optics. Chapman and Hall/CRC, London (1993)

    MATH  Google Scholar 

  3. Červený V., Pšenčík I.: Plane waves in viscoelastic anisotropic media-I. Theory. Geophys. J. Int. 161, 197–212 (2005)

    Article  Google Scholar 

  4. Destrade M.: Finite-amplitude inhomogeneous plane waves in a deformed mooney-rivlin material. Q. J. Mech. Appl. Math. 53(3), 343–361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Destrade M., Ogden R., Saccomandi G.: Small amplitude waves and stability for a pre-stressed viscoelastic solid. Z. Angew. Math. Phys. (ZAMP) 60, 511–528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fatemi M., Manduca A., Greenleaf J.F.: Imaging elastic properties of biological tissues by low-frequency harmonic vibration. Proc. IEEE 91(10), 1503–1519 (2003)

    Article  Google Scholar 

  7. Fosdick R.L., Yu J.-H.: Thermodynamics, stability and non-linear oscillations of viscoelastic solids—i. Differential type solids of second grade. Int. J. Non-Linear Mech. 31(4), 495–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fosdick R.L., Yu J.-H.: Thermodynamics, stability and non-linear oscillations of viscoelastic solids-ii. History type solids. Int. J. Non-Linear Mech. 33(1), 165–188 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garg N.: Effect of initial stress on harmonic plane homogeneous waves in viscoelastic anisotropic media. J. Sound Vib. 303(3–5), 515–525 (2007)

    Article  Google Scholar 

  10. Greenleaf J.F., Fatemi M., Insana M.: Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003)

    Article  Google Scholar 

  11. Guz A.N.: Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies (Foundations of Engineering Mechanics). Springer, Berlin (1999)

    Google Scholar 

  12. Hayes M.A., Rivlin R.S.: Propagation of sinusoidal small-amplitude waves in a deformed viscoelastic solid II. Acoust. Soc. Am. J. 51, 1652–1663 (1972)

    Article  MATH  Google Scholar 

  13. Hayes M.A., Saccomandi G.: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. 59(1–3), 213–225 (2000)

    Article  MATH  Google Scholar 

  14. Hayes M.A.: Propagation of sinusoidal small-amplitude waves in a deformed viscoelastic solid I. Acoust. Soc. Am. J. 46, 610–616 (1969)

    Article  MATH  Google Scholar 

  15. Hoskins P.R.: Physical properties of tissues relevant to arterial ultrasound imaging and blood velocity measurement. Ultrasound Med. Biol. 33(10), 1527–1539 (2007)

    Article  Google Scholar 

  16. Karnaukhov V.G.: Fundamental relationships of the theory of small viscoelastic strains imposed on finite strains for thermorheological materials. Int. Appl. Mech. 13, 1079–1085 (1977)

    MATH  Google Scholar 

  17. Lee E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  18. Lion A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech. 123, 1–25 (1997)

    Article  MATH  Google Scholar 

  19. Lion A., Kardelky C.: The payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. Int. J. Plast. 20(7), 1313–1345 (2004)

    Article  MATH  Google Scholar 

  20. Lion A., Retka J., Rendek M.: On the calculation of predeformation-dependent dynamic modulus tensors in finite nonlinear viscoelasticity. Mech. Res. Commun. 36(6), 653–658 (2009)

    Article  Google Scholar 

  21. Lion A.: Thixotropic behaviour of rubber under dynamic loading histories: experiments and theory. J. Mech. Phys. Solids 46(5), 895–930 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Myskis, A.D.: Advanced Mathematics for Engineers. Imported Pubn. (1975)

  23. Pioletti D.P., Rakotomanana L.R., Benvenuti J.F., Leyvraz P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31(8), 753–757 (1998)

    Article  Google Scholar 

  24. Quintanilla R., Saccomandi G.: Some qualitative properties for the equations of pre-stressed viscoelastic solids. Mech. Res. Commun. 36(5), 547–555 (2009)

    Article  MathSciNet  Google Scholar 

  25. Rajagopal K.R., Saccomandi G.: Shear waves in a class of nonlinear viscoelastic solids. Q. J. Mech. Appl. Math. 56(2), 311–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reese S., Govindjee S.: Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers. Mech. Time-Depend. Mater. 1, 357–396 (1997)

    Article  Google Scholar 

  27. Reese S., Govindjee S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35(26–27), 3455–3482 (1998)

    Article  MATH  Google Scholar 

  28. Rendek M., Lion A.: Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and fem—implementation. Int. J. Solids Struct. 47(21), 2918–2936 (2010)

    Article  MATH  Google Scholar 

  29. Rivlin R.S., Wilmanski K.: The passage from memory functionals to rivlin-ericksen constitutive equations. Z. Angew. Math. Phys. 38, 624–629 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saccomandi G.: Small amplitude plane waves in deformed mooney-rivlin viscoelastic solids. Math. Mech. Solids 10(4), 361–376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sidoroff J.: Un modèle viscoélastique nonlinéaire avec configuration intermédiaire. J. Mech. 13, 679–713 (1974)

    MathSciNet  Google Scholar 

  32. Sinkus R., Bercoff J., Tanter M., Gennisson J.L., El Khoury C., Servois V., Tardivon A., Fink M.: Nonlinear viscoelastic properties of tissue assessed by ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2009–2018 (2006)

    Article  Google Scholar 

  33. Wineman A.S.: Nonlinear viscoelastic solids-a review. Math. Mech. Solids 14(3), 300–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Negahban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Negahban, M. Propagation of infinitesimal thermo-mechanical waves during the finite-deformation loading of a viscoelastic material: general theory. Z. Angew. Math. Phys. 63, 1143–1176 (2012). https://doi.org/10.1007/s00033-012-0200-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0200-5

Mathematics Subject Classification (2010)

Keywords

Navigation