Log in

Micromorphic continuum model for electromagnetoelastic solids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The microcontinuum theory of electroelasticity is considered for polarizable dielectrics on the basis of dipole and quadrupole densities as microfields. Electromagnetic contributions to force, couple, and power are derived, and their correspondence with quantities evaluated in terms of macroscopic polarization and magnetization is examined. A constitutive model that accounts for dissipation is proposed via internal variables satisfying suitable evolution equations. This approach reveals different roles of polarization and strain measures in dissipative processes. The link between the spin inertia tensor and the pair of dipole and quadrupole per unit mass is exploited to derive a nonlinear system of governing equations for a reduced set of variables. The special cases of microstretch and micropolar continua are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorentz, H.A.: The Theory of Electrons. (Reprint of the 2nd edition). Dover, New York (1952)

  2. Dixon R.C., Eringen A.C.: A dynamical theory of polar elastic dielectric—I. Int. J. Eng. Sci 3, 359–377 (1965)

    Article  MathSciNet  Google Scholar 

  3. Dixon R.C., Eringen A.C.: A dynamical theory of polar elastic dielectric—II. Int. J. Eng. Sci 3, 379–398 (1965)

    Article  MathSciNet  Google Scholar 

  4. Maugin G.A., Eringen A.C.: On the equations of electrodynamics of deformable bodies of finite extent. J. Mècanique 16, 101–147 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Nelson D.F.: Electric, Optic and Acoustic Interactions in Dielectrics. Wiley, New York (1979)

    Google Scholar 

  6. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  7. Mindlin R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)

    Article  MATH  Google Scholar 

  8. Maugin G.A., Pouget J.: Electroacoustic equations in one-domain ferroelectric bodies. J. Acoust. Soc. Am. 68, 575–587 (1980)

    Article  MATH  Google Scholar 

  9. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B, 77, 125424/1–9 (2008)

    Google Scholar 

  10. Eringen A.C., Şuhubi E.S.: Nonlinear theory of simple microelastic solids I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  Google Scholar 

  11. Eringen A.C., Şuhubi E.S.: Nonlinear theory of simple microelastic solids II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  Google Scholar 

  12. Eringen A.C.: Microcontinuum Field Theories I—Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  13. Eringen A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen A.C.: Electromagnetic theory of microstretch elasticity and bone modeling. Int. J. Eng. Sci. 42, 231–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maugin G.A.: Sur l’objectivité des entitès électromagnétiques dans un corp matériel en mouvement à l’approximation galiléenne. C.R. Acad. Sci. Paris 289(B), 205–208 (1979)

    MathSciNet  Google Scholar 

  16. Romeo M.: Hyperbolic system of balance laws modeling dissipative ionic crystals. J. Appl. Math. Phys. (ZAMP) 58, 697–714 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Romeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, M. Micromorphic continuum model for electromagnetoelastic solids. Z. Angew. Math. Phys. 62, 513–527 (2011). https://doi.org/10.1007/s00033-011-0121-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0121-8

Mathematics Subject Classification (2000)

Keywords

Navigation