Log in

On global existence and blowup of solutions of Stochastic Keller–Segel type equation

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper we consider a stochastic Keller–Segel type equation, perturbed with random noise. We establish that for special types of random pertubations (i.e. in a divergence form), the equation has a global weak solution for small initial data. Furthermore, if the noise is not in a divergence form, we show that the solution has a finite time blowup (with nonzero probability) for any nonzero initial data. The results on the continuous dependence of solutions on the small random perturbations, alongside with the existence of local strong solutions, are also derived in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biler, P.: Mathematical challenges in the theory of chemotaxis. Ann. Math. Sil. 32(1), 43–63 (2018). https://doi.org/10.2478/amsil-2018-0004

    Article  MathSciNet  MATH  Google Scholar 

  2. Biler, P., Karch, G.: Blowup of solutions to generalized Keller–Segel model. J. Evol. Equ. 10(2), 247–262 (2010). https://doi.org/10.1007/s00028-009-0048-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Patlak–Keller–Segel model in \(R^2\). Commun. Pure Appl. Math. 61(10), 1449–1481 (2008). https://doi.org/10.1002/cpa.20225

    Article  MATH  Google Scholar 

  4. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 1–3 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Carrillo, J., Choi, Y.-P., Hauray, M.: The derivation of swarming models: mean-field limit and Wasserstein distances. Collective dynamics from bacteria to crowds: an excursion through modeling, analysis and simulation series. CISM Int. Centre Mech. Sci. 553, 1–46 (2014)

    Article  Google Scholar 

  6. Coghi, M., Flandoli, F.: Propagation of chaos for interacting particles subject to environmental noise. Ann. Appl. Probab. 26(3), 1407–1442 (2016). https://doi.org/10.1214/15-AAP1120

    Article  MathSciNet  MATH  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992). https://doi.org/10.1017/CBO9780511666223

    Book  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511662829

    Book  MATH  Google Scholar 

  9. Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Physica D 240(14–15), 1123–1144 (2011). https://doi.org/10.1016/j.physd.2011.03.009

    Article  MathSciNet  MATH  Google Scholar 

  10. Flandoli, F., Galeati, L., Luo, D.: Delayed blow-up by transport noise. Commun. Partial. Differ. Equ. 46(9), 1757–1788 (2021). https://doi.org/10.1080/03605302.2021.1893748

    Article  MathSciNet  MATH  Google Scholar 

  11. Hieber, M., Misiats, O., Stanzhytskyi, O.: On the bidomain equations driven by stochastic forces. Discrete Contin. Dyn. Syst. 40(11), 6159–6177 (2020). https://doi.org/10.3934/dcds.2020274

    Article  MathSciNet  MATH  Google Scholar 

  12. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2), 183–217 (2009). https://doi.org/10.1007/s00285-008-0201-3

  13. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Deutsch. Math.-Verein. 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. Deutsch. Math.-Verein. 106(2), 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Huang, H., Qiu, J.: The microscopic derivation and well-posedness of the stochastic Keller–Segel equation. J. Nonlinear Sci. 31(1), 6–31 (2021). https://doi.org/10.1007/s00332-020-09661-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Ikeda, N., Watanabe, S.: A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14, 619–633 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Jabin, P.-E., Wang, Z.: Mean field limit for stochastic particle systems. In: Active particles, vol. 1. Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., pp. 379–402. Springer, Cham (2017)

  18. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329(2), 819–824 (1992). https://doi.org/10.2307/2153966

    Article  MathSciNet  MATH  Google Scholar 

  19. Keller, E., Segel, L.: Initiation of slide mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  20. Krylov, N.: An Analytic Approach to Spdes. Stochastic Partial Differential Equations: Six Perspectives, vol. 64. AMS Mathematical Surveys and Monographs (1999)

  21. Krylov, N.: Ito’s formula for the lp-norm of stochastic \(w_1^p\) -valued processes. Probab. Theory Related Fields 147(3), 583–605 (2010)

  22. Li, D., Rodrigo, J.L., Zhang, X.: Exploding solutions for a nonlocal quadratic evolution problem. Rev. Mat. Iberoam. 26(1), 295–332 (2010). https://doi.org/10.4171/RMI/602

    Article  MathSciNet  MATH  Google Scholar 

  23. Misiats, O., Stanzhytskyi, O., Yip, N.: Existence and uniqueness of invariant measures for stochastic reaction–diffusion equations in unbounded domains. J. Theor. Probab. 29(3), 996–1026 (2016)

    Article  MathSciNet  Google Scholar 

  24. Misiats, O., Stanzhytskyi, O., Yip, N.K.: Asymptotic analysis and homogenization of invariant measures. Stoch. Dyn. 19(2), 1950015 (2019). https://doi.org/10.1142/S0219493719500151

    Article  MathSciNet  MATH  Google Scholar 

  25. Misiats, O., Stanzhytskyi, O., Yip, N.K.: Invariant measures for stochastic reaction–diffusion equations with weakly dissipative nonlinearities. Stochastics 92(8), 1197–1222 (2020). https://doi.org/10.1080/17442508.2019.1691212

    Article  MathSciNet  Google Scholar 

  26. Rosenzweig, M., Staffilani, G.: Global solutions of aggregation equations and other flows with random diffusion. ar**v preprint. ar**v:2109.09892 (2021)

Download references

Acknowledgements

The research of Oleksandr Misiats was supported by Simons Collaboration Grant for Mathematicians No. 854856. The research of Ihsan Topaloglu was supported by Simons Collaboration Grant for Mathematicians No. 851065. The research of Oleksandr Stanzhytskyi was supported by Ukrainian Government Scientific Research Grant No. 210BF38-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Topaloglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misiats, O., Stanzhytskyi, O. & Topaloglu, I. On global existence and blowup of solutions of Stochastic Keller–Segel type equation. Nonlinear Differ. Equ. Appl. 29, 3 (2022). https://doi.org/10.1007/s00030-021-00735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00735-2

Keywords

Mathematics Subject Classification

Navigation