Log in

Parabolic induction in characteristic p

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(\mathrm{F}\) (resp. \(\mathbb F\)) be a nonarchimedean locally compact field with residue characteristic p (resp. a finite field with characteristic p). For \(k=\mathrm{F}\) or \(k=\mathbb F\), let \(\mathbf {G}\) be a connected reductive group over k and R be a commutative ring. We denote by \(\mathrm{Rep}( \mathbf G(k)) \) the category of smooth R-representations of \( \mathbf G(k) \). To a parabolic k-subgroup \({\mathbf P}=\mathbf {MN}\) of \(\mathbf G\) corresponds the parabolic induction functor \(\mathrm{Ind}_{\mathbf P(k)}^{\mathbf G(k)}:\mathrm{Rep}( \mathbf M(k)) \rightarrow \mathrm{Rep}( \mathbf G(k))\). This functor has a left and a right adjoint. Let \({{\mathcal {U}}}\) (resp. \({\mathbb {U}}\)) be a pro-p Iwahori (resp. a p-Sylow) subgroup of \( \mathbf G(k) \) compatible with \({\mathbf P}(k)\) when \(k=\mathrm{F}\) (resp. \(\mathbb F\)). Let \({H_{ \mathbf G(k)}}\) denote the pro-p Iwahori (resp. unipotent) Hecke algebra of \( \mathbf G(k) \) over R and \(\mathrm{Mod}({H_{ \mathbf G(k)}})\) the category of right modules over \({H_{ \mathbf G(k)}}\). There is a functor \(\mathrm{Ind}_{{H_{ \mathbf M(k)}}}^{{H_{ \mathbf G(k)}}}: \mathrm{Mod}({H_{ \mathbf M(k)}}) \rightarrow \mathrm{Mod}({H_{ \mathbf G(k) }})\) called parabolic induction for Hecke modules; it has a left and a right adjoint. We prove that the pro-p Iwahori (resp. unipotent) invariant functors commute with the parabolic induction functors, namely that \(\mathrm{Ind}_{\mathbf P(k)}^{\mathbf G(k)}\) and \(\mathrm{Ind}_{{H_{ \mathbf M(k)}}}^{{H_{ \mathbf G(k)}}}\) form a commutative diagram with the \({{\mathcal {U}}}\) and \({{\mathcal {U}}}\cap \mathbf M(\mathrm{F})\) (resp. \({\mathbb {U}}\) and \({\mathbb {U}}\cap \mathbf M(\mathbb F) \)) invariant functors. We prove that the pro-p Iwahori (resp. unipotent) invariant functors also commute with the right adjoints of the parabolic induction functors. However, they do not commute with the left adjoints of the parabolic induction functors in general; they do if p is invertible in R. When R is an algebraically closed field of characteristic p, we show that an irreducible admissible R-representation of \( \mathbf G(\mathrm{F}) \) is supercuspidal (or equivalently supersingular) if and only if the \({H_{ \mathbf G(\mathrm{F})}}\)-module \({\mathfrak {m}}\) of its \({{\mathcal {U}}}\)-invariants admits a supersingular subquotient, if and only if \({\mathfrak {m}}\) is supersingular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, N.: On a classification of irreducible admissible modulo \(p\) representations of a \(p\)-adic split reductive group. Compos. Math. 149(12), 2139–2168 (2013)

    Article  MathSciNet  Google Scholar 

  2. Abe, N.: Modulo p parabolic induction of pro-p-Iwahori Hecke algebra. J. Reine Angew. Math., https://doi.org/10.1515/crelle-2016-0043

  3. Abe, N.: Parabolic inductions for pro-p-Iwahori Hecke algebras (2016) ar**v:1612.01312

  4. Abe, N., Henniart, G., Herzig, F., Vignéras, M.-F.: A classification of admissible irreducible modulo \(p\) representations of reductive \(p\)-adic groups. J. Am. Math. Soc. 30(2), 495–559 (2016)

    Article  Google Scholar 

  5. Abe, N., Henniart, G., Vignéras, M.-F.: Mod \(p\) representations of reductive \(p\)-adic groups: functorial properties. To appear in Trans. Am. Math. Soc. (2018)

  6. Abe, N., Henniart, G., Vignéras, M.-F.: On pro-p-Iwahori invariants of R-representations of p-adicgroups. Represent. Theory (2018) (to appear)

  7. Bell, A., Farnsteiner, R.: On the theory of Frobenius extensions and its application to Lie superalgebras. Trans Am.Math. Soc. 335(1), 407–424 (1993)

    Article  MathSciNet  Google Scholar 

  8. Benson, D.J.: Representations and Cohomology I, Basic Representation Theory of Finite Groups and Associative Algebras. Cambridge Studies in Advanced Mathematics (1991)

  9. Bernstein, J., Zelevinski, A.: Induced representations of \(p\)-adic groups I. Ann. Sci. Ecole Norm. Sup. (4) 10(4), 441–472 (1977)

    Article  MathSciNet  Google Scholar 

  10. Borel, A.: Admissible representations of a semisimple group with vectors fixed under anIwahori subgroup. Invent. Math. 35, 233–259 (1976)

    Article  MathSciNet  Google Scholar 

  11. Bourbaki, N.: Éléments de mathématiques. Algèbre, Chap. 10. Algèbre homologique. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Bourbaki, N.: Elements of Mathematics. Lie Groups and Lie Algebras, Chap. 4–6. Springer, Berlin (2002)

    Book  Google Scholar 

  13. Breuil, C.: Sur quelques représentations modulaires et p-adiques de \({\rm GL}_2(\mathbb{Q}_p)\) I. Compos. Math. 138, 165–188 (2003)

    Article  Google Scholar 

  14. Breuil, C., Paskunas, V.: Towards a modulo \(p\) Langlands correspondence for GL(2). Mem. Am. Math. Soc. 216 (2012)

  15. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES 41, 5–251 (1972)

    Article  Google Scholar 

  16. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Publ. Math. IHES 60, 5–184 (1984)

    Article  Google Scholar 

  17. Bushnell, C.J., Kutzko, P.C., structure theory via types: Smooth representations of reductive p-adic groups. Proc. Lond. Math. Soc. 77, 582–634 (1998)

    Article  Google Scholar 

  18. Cabanes, M.: Extension groups for modular Hecke algebras. J. Fac. Sci. Univ. Tokyo 36(2), 347–362 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Cabanes, M.: A criterion of complete reducibility and some applications. In: Cabanes, M. (ed.), Représentations linéaires des groupes finis, Astérisque, 181–182 pp. 93–112 (1990)

  20. Cabanes, M., Enguehard, M.: Representation Theory of Finite Reductive Groups. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  21. Carter, R.: Finite Groups of Lie Type. Wiley Interscience, Hoboken (1985)

    MATH  Google Scholar 

  22. Carter, R.W., Lusztig, G.: Modular representations of finite groups of Lie type. Proc. London Math. Soc. 32, 347–384 (1976)

    Article  MathSciNet  Google Scholar 

  23. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. 167(1), 245–298 (2008)

    Article  MathSciNet  Google Scholar 

  24. Colmez, P.: Representations de \(GL_2(\mathbb{Q}_p)\) et \((\varphi, \Gamma )\)-modules. Astérisque 330, 281–509 (2010)

    Google Scholar 

  25. Dat, J-Fr: Finitude pour les reprÃ\(\copyright \)sentations lisses des groupes p-adiques. J. Inst. Math. Jussieu 8(1), 261–333 (2009)

    Article  MathSciNet  Google Scholar 

  26. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150. Springer, Berlin (2008)

    Google Scholar 

  27. Emerton, M.: Ordinary parts of admissible representations of reductive \(p\)-adic groups II. Asterisque 331, 383–438 (2010)

    MATH  Google Scholar 

  28. Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in Mathematics 4. Springer, Berlin (1971)

    Book  Google Scholar 

  29. Henniart, G., Vignéras, M.-F.: The Satake isomorphism modulo \(p\) with weight. J Für Reine Angew. Math. 701, 33–75 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Henniart, G., Vignéras, M.-F.: Comparison of compact induction with parabolic induction. Special issue to the memory of J. Rogawski. Pac. J. Math. 260(2), 457–495 (2012)

    Article  Google Scholar 

  31. Herzig, F.: The classification of admissible irreducible modulo \(p\) representations of a \(p\)-adic \(GL_{n}\). Invent. Math. 186, 373–434 (2011)

    Article  MathSciNet  Google Scholar 

  32. Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Publ. Math., Inst. Hautes Étud. Sci. 25, 5–48 (1965)

    Article  MathSciNet  Google Scholar 

  33. James, G.: The irreducible representations of the finite general linear groups. Proc. Lond. Math. Soc. 52, 236–268 (1986)

    Article  MathSciNet  Google Scholar 

  34. Kashiwara, M., Shapira, P.: Categories and Sheaves. Grundlehren des Mathematischen Wissenschaften, vol. 332. Springer, Berlin (2006)

    Google Scholar 

  35. Khovanov, M.: Heisenberg algebra and a graphical calculus. Fundam. Math. 225, 169–210 (2014)

    Article  MathSciNet  Google Scholar 

  36. Kottwitz, R.: Isocrystals with additional structure II. Compos. Math. 109, 255–309 (1997)

    Article  MathSciNet  Google Scholar 

  37. Koziol, K.: Pro-\(p\)-Iwahori invariants for \({\rm SL}_2\) and \(L\)-packets of Hecke modules. Int. Math. Res. Not. 4, 1090–1125 (2016)

    Article  MathSciNet  Google Scholar 

  38. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2(3), 599–635 (1989)

    Article  MathSciNet  Google Scholar 

  39. Nagao, H., Tsushima, Y.: Representations of Finite Groups. Academic Press, New York (1989)

    MATH  Google Scholar 

  40. Ollivier, R.: Le foncteur des invariants sous l’action du pro-\(p\) Iwahori de \({\rm GL}_2(\mathbb{Q}_p)\). J. für dir reine und angewandte Mathematik 635, 149–185 (2009)

    MATH  Google Scholar 

  41. Ollivier, R.: Parabolic Induction and Hecke modules in characteristic \(p\) for \(p\)-adic \({\rm GL}_n\). ANT 4(6), 701–742 (2010)

    Article  Google Scholar 

  42. Ollivier, R.: Compatibility between Satake and Bernstein isomorphisms in characteristic \(p\). ANT 8(5), 1071–1111 (2014)

    Article  MathSciNet  Google Scholar 

  43. Ollivier, R., Schneider, P.: Iwahori Hecke algebras are Gorenstein. J. Inst. Math. Jussieu 13(4), 753–809 (2014)

    Article  MathSciNet  Google Scholar 

  44. Ollivier, R., Sécherre, V.: Modules universels en caractéristique naturelle pour un groupe réductif fini. Ann. Inst. Fourier 65(1), 397–430 (2015)

    Article  MathSciNet  Google Scholar 

  45. Ollivier, R., Sécherre, V.: Modules universels de GL(3) sur un corps p-adique en caractéristique \(p\). Preprint (2011). www.math.ubc.ca/~ollivier

  46. Paškūnas, V.: Coefficient systems and supersingular representations of \({\rm GL}_2(F)\), Mém. Soc. Math. Fr. (NS) 99 (2004)

  47. Sawada, H.: Endomorphism rings of split \((B, N)\)-pairs. Tokyo J. Math. 1(1), 139–148 (1978)

    Article  MathSciNet  Google Scholar 

  48. Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105(1), 47–122 (1991)

    Article  MathSciNet  Google Scholar 

  49. Schneider, P., Stuhler, U.: Representation theory and sheaves on the Bruhat-Tits building. Publ. Math. IHES 85, 97–191 (1997)

    Article  MathSciNet  Google Scholar 

  50. Serre, J.-P.: Cours d’arithmétique. Presses Universitaires de France, Paris (1970)

    MATH  Google Scholar 

  51. Silberger, A .J.: Isogeny restrictions of irreducible admissible representations are finite direct sums of irreducible admissible representations. Proc. Am. Math. Soc. 93(2), 263–264 (1979)

    Article  MathSciNet  Google Scholar 

  52. Tinberg, N .B.: Modular representations of finite groups with unsaturated split \((B,N)\)-pairs. Can. J. Math. 32(3), 714–733 (1980)

    Article  MathSciNet  Google Scholar 

  53. Tits, J.: Reductive groups over local fields. In: Borel, C. (ed.), Proc. Symp. Pure Math., vol. 33, no. 1, pp. 29–69. Automorphic Forms,Representations, and \(L\)-FunctionsAmerican Math. Soc (1979)

  54. Vignéras, M.-F.: Représentations \(\ell \)-modulaires d’un groupe réductif fini \(p\)-adique avec \(\ell \ne p\). Birkhauser Prog. Math. 137 (1996)

  55. Vignéras, M.-F.: Induced representations of reductive p-adic groups in characteristic \(\ell \ne p\). Sel. Math. 4, 549–623 (1998)

    Article  Google Scholar 

  56. Vignéras, M.-F.: Representations modulo p of the p-adic group GL(2, F ). Compos. Math. 140, 333–358 (2004)

    Article  MathSciNet  Google Scholar 

  57. Vignéras, M.-F.: Série principale modulo \(p\) de groupes réductifs \(p\)-adiques. GAFA Geom. Funct. Anal. 17, 2090–2112 (2007)

    Article  Google Scholar 

  58. Vignéras, M.-F.: Pro-\(p\) Iwahori Hecke ring and supersingular \(\overline{\mathbb{F}}_{p}\)-representations. Math. Annalen 331, pp. 523–556 (2005). Erratum vol. 333(3), pp. 699–701

  59. Vignéras, M.-F.: Représentations irréductibles de \(GL(2,F)\) modulo \(p\). In: Burns, D., Buzzard, K., Nekovar, J., (eds.) \(L\)-Functions and Galois representations, LMS Lecture Notes, vol. 320 (2007)

  60. Vignéras, M.-F.: Algèbres de Hecke affines génériques. Represent. Theory 10, 1–20 (2006)

    Article  MathSciNet  Google Scholar 

  61. Vignéras, M.-F.: The right adjoint of the parabolic induction. Birkhauser series progress in mathematics Arbeitstagung Bonn 2013: In: Ballmann, W., Blohmann, C., Faltings, G., Teichner, P., Zagier, D. (eds.), Memory of Friedrich Hirzebruch (2013)

  62. Vignéras, M.-F.: The pro-\(p\) Iwahori Hecke algebra of a reductive \(p\)-adic group I. Compos. Math. 152, 693–753 (2016)

    Article  MathSciNet  Google Scholar 

  63. Vignéras, M.-F.: The pro-\(p\) Iwahori Hecke algebra of a reductive \(p\)-adic group II. Muenster J. of Math. 7, 363–379 (2014)

    MathSciNet  MATH  Google Scholar 

  64. Vignéras, M.-F.: The pro-\(p\)-Iwahori Hecke algebra of a reductive \(p\)-adic group III (spherical Hecke algebras and supersingular modules). J. Inst. Math. Jussieu 16(3), 571–608 (2015)

    Article  MathSciNet  Google Scholar 

  65. Vignéras, M.-F.: The pro-\(p\) Iwahori Hecke algebra of a reductive \(p\)-adic group IV (Levi subgroup and central extension). In preparation

  66. Vignéras, M.-F.: The pro-\(p\) Iwahori Hecke algebra of a reductive \(p\)-adic group V (parabolic induction). Pac. J. Math. 279, 499–529 (2015)

    Article  MathSciNet  Google Scholar 

  67. Zelevinsky, A.V.: Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. Ecole Norm. Sup. (4) 13(2), 165–210 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Noriyuki Abe for suggesting the counter example of Prop. 4.12 and for generously sharing his recent results with us. We are also thankful to Guy Henniart for his continuous interest and helpful remarks. Our work was carried out at the Institut de Mathematiques de Jussieu – Paris 7, the University of British Columbia and the Mathematical Sciences Research Institute. We would like to acknowledge the support of these institutions. The first author is partially funded by NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ollivier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollivier, R., Vignéras, MF. Parabolic induction in characteristic p. Sel. Math. New Ser. 24, 3973–4039 (2018). https://doi.org/10.1007/s00029-018-0440-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0440-0

Keywords

Mathematics Subject Classification

Navigation