Log in

Sharp ill-posedness for the generalized Camassa–Holm equation in Besov spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the Cauchy problem for the generalized Camassa–Holm equation that containing, as its members, three integrable equations: the Camassa–Holm equation, the Degasperis–Procesi equation and the Novikov equation. We present a new and unified method to prove the sharp ill-posedness for the generalized Camassa–Holm equation in \(B^s_{p,\infty }\) with \(s>\max \{1+1/p, 3/2\}\) and \(1\le p\le \infty \) in the sense that the solution map to this equation starting from \(u_0\) is discontinuous at \(t = 0\) in the metric of \(B^s_{p,\infty }\). Our result covers and improves the previous work given in Li et al. (J Differ Equ 306:403–417, 2022), solving an open problem left in Li et al. (2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. S.C. Anco, P.L. da Silva, I.L. Freire, A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations, J. Math. Phys., 56 (2015), 091506.

    Article  MathSciNet  Google Scholar 

  2. H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg, 2011.

    Book  Google Scholar 

  3. R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664.

    Article  MathSciNet  Google Scholar 

  4. D. Chen, Y. Li, W. Yan, On the Cauchy problem for a generalized Camassa-Holm equation, Discr. Contin. Dyn. Syst., 35(3) (2015), 871–889.

    Article  MathSciNet  Google Scholar 

  5. A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier, 50 (2000), 321–362.

    Article  MathSciNet  Google Scholar 

  6. A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Exposition. Math., 15 (1997), 53–85.

    MathSciNet  MATH  Google Scholar 

  7. A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953–970.

  8. A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303–328.

  9. A. Constantin, J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475–504.

    Article  MathSciNet  Google Scholar 

  10. A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243.

    Article  MathSciNet  Google Scholar 

  11. A. Constantin, J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423–431.

    Article  MathSciNet  Google Scholar 

  12. A. Constantin, J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559–568.

    Article  MathSciNet  Google Scholar 

  13. A. Constantin, W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603–610.

    Article  MathSciNet  Google Scholar 

  14. A. Degasperis, D. Holm, A. Hone, A new integral equation with peakon solutions. Theoret. Math. Phys. 133 (2002), 1463–1474.

    Article  MathSciNet  Google Scholar 

  15. J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J. 56 (2007), 87–177.

    Article  MathSciNet  Google Scholar 

  16. A. Fokas, B. Fuchssteiner, Symplectic structures, their bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981/1982) 47–66.

  17. K. Grayshan, A. Himonas, Equations with peakon traveling wave solutions, Adv. Dyn. Syst. Appl. 8 (2013) 217–232.

    MathSciNet  Google Scholar 

  18. Z. Guo, X. Liu, L. Molinet, Z. Yin, Ill-posedness of the Camassa-Holm and related equations in the critical space, J. Differ. Equ., 266, 1698–1707 (2019).

    Article  MathSciNet  Google Scholar 

  19. A. Himonas, C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation, Adv. Differ. Equ., 19 (2014) 161–200.

    MathSciNet  MATH  Google Scholar 

  20. A. Himonas, C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449–479.

    Article  MathSciNet  Google Scholar 

  21. A. Himonas, C. Holliman, C. Kenig, Construction of 2-peakon solutions and ill-posedness for the Novikov equation, SIAM J. Math. Anal, 50(3) (2018), 2968–3006.

    Article  MathSciNet  Google Scholar 

  22. A. Home, J. Wang, Integrable peakon equations with cubic nonlinearity, J Phys A., 41 (2008) 372002: 1–11.

    MathSciNet  Google Scholar 

  23. J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl. 306 (2005), 72–82.

    Article  MathSciNet  Google Scholar 

  24. J. Li, Y. Yu, W. Zhu, Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces, J. Differ. Equ., 269 (2020) 8686–8700.

    Article  MathSciNet  Google Scholar 

  25. J. Li, Y. Yu, W. Zhu, Ill-posedness for the Camassa-Holm and related equations in Besov spaces, J. Differ. Equ., 306 (2022), 403–417.

    Article  MathSciNet  Google Scholar 

  26. J. Li, M. Li, W. Zhu, Non-uniform dependence on initial data for the Novikov equation in Besov spaces, J. Math. Fluid Mech. 22:50 (2020), 10pp.

  27. H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci. 17 (2007), 169–198.

    Article  MathSciNet  Google Scholar 

  28. L. Ni, Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Differ. Equ., 250 (2011), 3002–3021.

    Article  MathSciNet  Google Scholar 

  29. V. Novikov, Generalization of the Camassa-Holm equation, J. Phys. A 42 (2009) 342002.

    Article  MathSciNet  Google Scholar 

  30. V.O. Vakhnenko, E.J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Solitons Fractals. 20 (2004), 1059–1073.

    Article  MathSciNet  Google Scholar 

  31. X. Wu, Y. Yu, Y. **ao, Non-uniform dependence on initial data for the generalized Camassa-Holm-Novikov equation in Besov space, J. Math. Fluid Mech., (2021), 23:104.

    Article  MathSciNet  Google Scholar 

  32. X. Wu, Z. Yin, Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa Classe Sci. Ser. V 11 (2012), 707–727.

  33. X. Wu, Z. Yin, A note on the Cauchy problem of the Novikov equation, Appl. Anal., 92 (2013), 1116–1137.

    Article  MathSciNet  Google Scholar 

  34. Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal. 212 (2004), 182–194.

    Article  MathSciNet  Google Scholar 

  35. K. Yan, Wave breaking and global existence for a family of peakon equations with high order nonlinearity, Nonlinear Anal. Real World Appl., 45 (2019) 721–735.

    Article  MathSciNet  Google Scholar 

  36. W. Yan, Y. Li, Y. Zhang, The Cauchy problem for the integrable Novikov equation, J. Differ. Equ., 253 (2012), 298–318.

    Article  MathSciNet  Google Scholar 

  37. Y. Zhao, Y. Li, W. Yan, Local well-posedness and persistence property for the generalized Novikov equation, Discr. Contin. Dyn. Syst., 34(2) (2014) 803–820.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Li is supported by the National Natural Science Foundation of China (11801090 and 12161004) and Jiangxi Provincial Natural Science Foundation (20212BAB211004). Y. Yu is supported by the National Natural Science Foundation of China (12101011) and Natural Science Foundation of Anhui Province (1908085QA05). W. Zhu is supported by the Guangdong Basic and Applied Research Foundation (2021A1515111018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghai Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, Y. & Zhu, W. Sharp ill-posedness for the generalized Camassa–Holm equation in Besov spaces. J. Evol. Equ. 22, 29 (2022). https://doi.org/10.1007/s00028-022-00792-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00792-9

Keywords

Mathematics Subject Classification

Navigation