Log in

Drivers of fish trophic guild composition in lakes of the Upper Paraná River floodplain

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

In freshwater ecosystems, flood pulses, the degree of connectivity between environments, and the vegetation mosaic are among the main variables affecting environmental structure at the landscape scale. At a finer scale, local limnological conditions seem to be more important for structuring river fish assemblages. However, rather than exerting isolated effects, these limnological characteristics can have combined impacts on the environment. We evaluated the main drivers of the spatial structuring of fish trophic guilds in the littoral zone of lakes in the Upper Paraná River floodplain (UPRF) and determined the relative importance of limnological conditions, spatial distance, and riparian vegetation. We sampled fish and limnological variables in June, September, and December of 2011, and classified the fish species into trophic guilds. We used variation partitioning analysis to assess the influence of the three sets of predictors and distance-based redundancy analysis to visualize the position of samples, as described by the composition of trophic guilds in multivariate space. The distribution of trophic guilds was mainly influenced by limnological variables, i.e., conductivity, chlorophyll a, and pH, in periods of low water. Spatial and riparian vegetation predictors, despite being low, also influenced the distribution because limnological variables and riparian vegetation of the UPRF have a well-defined spatial structure due to differences between rivers. The lakes with Class III riparian vegetation (dominated by tree species) supported most of the trophic guilds, including insectivores. This indicates that allochthonous materials, even when they occur in smaller proportions, contribute to the structuring of fish communities in periods of low water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available upon request.

Code availability

The codes are available upon request.

References

  • Abelha MCF, Agostinho AA, Goulart E (2001) Plasticidade trófica em peixes de água doce. Acta Sci Biol Sci 23:425–434

    Google Scholar 

  • Agostinho AA, Thomaz SM, Minte-Vera CM, Winemiller KO (2000) Biodiversity in the high Paraná River floodplain. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation. Backhuys Publishers, Leiden, pp 89–118

    Google Scholar 

  • Agostinho AA, Gomes LC, Thomaz SM, Hahn NS (2004a) The upper Paraná River and its floodplain: main characteristics and perspectives for management and conservation. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden, pp 381–393

    Google Scholar 

  • Agostinho AA, Thomaz SM, Gomes LC (2004b) Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol Hydrobiol 4(3):255–268

    Google Scholar 

  • Agostinho AA, Gomes LC, Santos NCL, Ortega JCG, Pelicice FM (2016) Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish Res 173:26–36. https://doi.org/10.1016/j.fishres.2015.04.006

    Article  Google Scholar 

  • Agostinho AA, Zalewski M (1996) A planície alagável do alto rio Paraná: importância e preservação. EDUEM, Maringá

  • Allan JD, Castillo MM, Capps KA (2021) Fluvial Geomorphology. In: Allan JD, Castillo MM, Capps KA (eds) Stream Ecology: Structure and function of running waters. Springer, Switzerland, pp 45–73

    Chapter  Google Scholar 

  • Arantes CC, Winemiller KO, Petrere M, Castello L, Hess LL, Freitas CE (2018) Relationships between forest cover and fish diversity in the Amazon River floodplain. J Appl Ecol 55(1):386–395. https://doi.org/10.1111/1365-2664.12967

    Article  Google Scholar 

  • Austen DJ, Bayley PB, Menzel BW (1994) Importance of the guild concept to fisheries research and management. Fisheries 19:12–20. https://doi.org/10.1577/1548-8446(1994)019%3c0012:IOTGCT%3e2.0.CO;2

    Article  Google Scholar 

  • Bando FM, Michelan TS, Cunha ER, Figueiredo BRS, Thomaz SM (2015) Macrophyte species richness and composition are correlated with canopy openness and water depth in tropical floodplain lakes. Braz J Bot 38:289–294. https://doi.org/10.1007/s40415-015-0137-y

    Article  Google Scholar 

  • Bonato KO, Delariva RL, Silva JC (2012) Diet and trophic guilds of fish assemblages in two streams with different anthropic impacts in the northwest of Paraná. Brazil Zoologia 29(1):27–38. https://doi.org/10.1590/S1984-46702012000100004

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85(7):1826–1832

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer

    Book  Google Scholar 

  • Campos JB, Souza MC (1997) Vegetação. In: Vazzoler AEA, Agostinho AA, Hahn NS (eds) A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. Eduem, Maringá, pp 333–344

  • Campos-Silva JV, Peres CA, Amaral JHF, Sarmento H, Forsberg B, Fonseca CR (2020) Fisheries management influences phytoplankton biomass of Amazonian floodplain lakes. J App Ecol. https://doi.org/10.1111/1365-2664.13763

    Article  Google Scholar 

  • Casatti L, Langeani F, Ferreira CP (2006) Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environ Manage 38:974–982. https://doi.org/10.1007/s00267-005-0212-4

    Article  PubMed  Google Scholar 

  • Chakraborty SK (2021) Biodiversity: Concept, Theories, and Significance in River Ecology. Chakraborty SK, Riverine Ecology, vol 2. Springer, Switzerland, pp 35–185

    Chapter  Google Scholar 

  • Correa SB, Winemiller KO (2014) Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95(1):2010–2224. https://doi.org/10.1890/13-0393.1

    Article  Google Scholar 

  • Cunha ER, Winemiller KO, Silva JCB, Lopes TM, Gomes LC, Thomaz SM, Agostinho AA (2019) α and β diversity of fishes in relation to a gradiente of habitat structural complexity supports the role of environmental filtering in community assembly. Aquat Sci 81:38. https://doi.org/10.1007/s00027-019-0634-3

    Article  Google Scholar 

  • Daga VS, Gogola TM, Sanches PV, Baumgartner G, Piana PA, Gubiani EA, Delariva L (2009) Fish larvae assemblages in two floodplain lakes with different degrees of connection to the Paraná River. Brazil Neotrop Ichthyol 7(3):429–438. https://doi.org/10.1590/S1679-62252009000300010

    Article  Google Scholar 

  • Delariva RL, Hahn NS, Kashiwaqui EAL (2013) Diet and trophic structure of the fish fauna in a subtropical ecosystem: Impoundment effects. Neotrop Ichthyol 11:891–904. https://doi.org/10.1590/S1679-62252013000400017

    Article  Google Scholar 

  • Dembkowski DJ, Miranda LE (2014) Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes. Hydrobiologia 721:129–144. https://doi.org/10.1007/s10750-013-1655-x

    Article  Google Scholar 

  • Dias RM, Ortega JCG, Gomes LC, Agostinho AA (2017) Trophic relationships in fish assemblages of Neotropical floodplain lakes: selectivity and feeding overlap mediated by food availability. Iheringia Sér Zool 107:e2017035. https://doi.org/10.1590/1678-4766e2017035

    Article  Google Scholar 

  • Dias RM, Ortega JCG, Strictar L, Santos NCL, Gomes LC, Luz-Agostinho KDG, Agostinho CS, Agostinho AA (2020) Fish trophic guild response to damming: Variations in abundance and biomass. River Res App 36(3):430–440. https://doi.org/10.1002/rra.3591

    Article  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkmüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Fernandes IM, Henrique-Silva R, Penha J, Zuanon J, Peres-Neto PR (2014) Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–475. https://doi.org/10.1111/j.1600-0587.2013.00527.x

    Article  Google Scholar 

  • Ferreira AF, Mormul RP, Catian G, Pott A, Pedralli G (2015) Distribution pattern of neotropical aquatic macrophytes in permanent lakes at a Ramsar site. Braz J Bot 38:131–139. https://doi.org/10.1007/s40415-014-0105-y

    Article  Google Scholar 

  • Florentino AC, Petrete M, Freitas CECF, Toledo JJ, Mateus L, Suárez YR, Penha J (2016) Determinants of changes in fish diversity and composition in floodplain lakes in two basins in the Pantanal wetlands, Brazil. Environ Biol Fish 99:265–274. https://doi.org/10.1007/s10641-016-0472-2

    Article  Google Scholar 

  • Friedl G, Wüest A (2002) Disrupting biogeochemical cycles: consequences of damming. Aquat Sci 64:55–65. https://doi.org/10.1007/s00027-002-8054-0

  • Garcia DAZ, Vidotto-Magnoni AP, Orsi ML (2018) Diet and feeding ecology of non-native fishes in lentic and lotic freshwater habitats. Aquat Invasions 13(4):1–9. https://doi.org/10.3391/ai.2018.13.4.13

    Article  Google Scholar 

  • Golterman HL, Clyno RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of freshwaters, 2nd edn. Blackwell, Oxford, p 315p

    Google Scholar 

  • Gomes LC, Miranda LE, Agostinho AA (2002) Fishery yield relative to chlorophyll A in reservoirs of the upper Paraná river. Brazil Fish Res 55(1–3):335–340. https://doi.org/10.1016/S0165-7836(01)00278-8

    Article  Google Scholar 

  • Gonçalves CS, Braga FMS, Casatti L (2018) Trophic structure of coastal freshwater stream fishes from an Atlantic rainforest: evidence of the importance of protected and forest-covered areas to fish diet. Environ Biol Fish 101:933–948

  • Goulding M, Carvalho ML, Ferreira EG (1988) Rio Negro, rich life in poor water. SPB Academic Publishing, The Hague, The Netherlands

    Google Scholar 

  • Granzotti RV, Miranda LE, Agostinho AA, Gomes LC (2018) Downstream impacts of dams: shifts in benthic invertivorous fish assemblages. Aquat Sci 80:28. https://doi.org/10.1007/s00027-018-0579-y

    Article  Google Scholar 

  • Granzotti RV, Tavares RW, Rodrigues AC, Lopes TM (2019) Gomes LC (2019) Environmental and geographic distance determining fish assemblage similarity in a floodplain: role of flow and macrophyte presence. Environ Biol Fish 102:747–757

    Article  Google Scholar 

  • Growns I (2004) A numerical classification of reproductive guilds of the freshwater fishes of south-eastern Australia and their application to river management. Fish Manag Ecol 11:369–377. https://doi.org/10.1111/j.1365-2400.2004.00404.x

    Article  Google Scholar 

  • Haines-Young R, Potschin M, Kienast F (2012) Indicators of ecosystem services potential at European scales: map** marginal changes and trade-offs. Ecol Indic 21:39–53. https://doi.org/10.1016/j.ecolind.2011.09.004

    Article  Google Scholar 

  • Harris G (1999) This is not the end of limnology (or of Science): the world may well be a lot simpler than we think. Freshw Biol 42(4):689–706. https://doi.org/10.1046/j.1365-2427.1999.00486.x

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística, (2012) Manual técnico da vegetação brasileira, 2nd edn. Manuais técnicos em Geociências, Rio de Janeiro, pp 1–139

    Google Scholar 

  • Jenks GF (1977) Optimal data classification for choropleth maps. Occasional paper No. 2. Lawrence, Kansas: University of Kansas, Department of Geography.

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river‐floodplain systems. In: Dodge DP (ed), Proceedings of the International Large River Symposium Canada. Can Spec Publi Fish Aquat Sci 106, Ottawa, pp 110–127

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Camargo E (2014) Definição e Classificação das Áreas Úmidas (AUs) Brasileiras: Base Científica para uma Nova Política de Proteção e Manejo Sustentável. In: Cunha CN, Piedade MTF, Junk WJ (eds) Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. INCT-INAU – EdUFMT, Cuiabá, pp 13–76

  • Junk WJ, Cunha N, Thomaz SM, Agostinho AA, Ferreira FA, Souza-Filho EE, Stevaux JC, Silva JCB, Rocha PC, Kawakita K (2021) Macrohabitat classification of wetlands as a powerful tool for management and protection: the example of the Paraná River floodplain, Brazil. Ecohydrol Hydrobiol 21:411–424

  • Keast A (1985) The piscivore feeding guild of fishes in small freshwater ecosystem. Environ Biol Fish 12:119–129

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Leite GF, Silva FTC, Gonçalves JFJ, Salles P (2015) Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia 762(1):223–238. https://doi.org/10.1007/s10750-015-2351-9

    Article  Google Scholar 

  • Li Y, Meng J, Zhang C, Ji S, Kong Q, Wang E, Liu J (2020) Bottow-up and top-down effects on phytoplankton communities in two freshwater lakes. PlosOne 15(4):e0231357. https://doi.org/10.1371/journal.pone.0231357

    Article  CAS  Google Scholar 

  • Lopes TM, Cunha ER, Silva JCB, Behrend RDL (2015) Gomes LC (2015) Dense macrophytes influences the horizontal distribution of fish in floodplain lakes. Environ Biol Fish 98:1741–1755. https://doi.org/10.1007/s10641-015-0394-4

    Article  Google Scholar 

  • Lopes TM, Peláez O, Dias RM, Oliveira AG, Rauber RG, Gomes LC, Agostinho AA (2020) Temporal changes in migratory fish body size in a Neotropical floodplain. Oecol Aust 24(2):489–504

    Article  Google Scholar 

  • Loro M, Ortega E, Arce RM, Geneletti D (2015) Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landsc Urban Plan 139:149–162. https://doi.org/10.1016/j.landurbplan.2015.03.006

    Article  Google Scholar 

  • Lowe-McConnell RH (1999) Estudos ecológicos de comunidades de peixes tropicais. Edusp, São Paulo.

  • Lubinski BJ, Jackson JR, Eggleton MA (2008) Relationships between floodplain lake fish communities and environmental variables in a large river-floodplain ecosystem. Trans Am Fish Soc 137:896–908

    Article  Google Scholar 

  • Mackereth FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Scient Public, London

    Google Scholar 

  • Manetta GI, Bialetzki A, Santos Neto C, Martinelli LA, Benedito E (2011) Ontogenetic changes in the food items assimilated by (Perciformes: Sciaenidae) and (Siluriformes: Pimelodidae). J Freshw Ecol 26:315–321

    Article  Google Scholar 

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Chapman and Hall, Massachusetts. https://doi.org/10.1007/978-1-4615-4066-3

    Book  Google Scholar 

  • McInerney PJ, Stoffels RJ, Shackleton ME, Davey CD (2017) Flooding drivers a macroinvertebrates biomass boom in ephemeral floodplain wetlands. Freshw Sci 36(4):726–738. https://doi.org/10.1086/694905

    Article  Google Scholar 

  • Mérona B, Vigouroux R (2006) Diet changes in fish species from a large reservoir in South America and their impact on the trophic structure of fish assemblages (Petit-Saut Dam, French Guiana). Ann Limnol - Int J Lim 42:53–61. https://doi.org/10.1051/limn/2006006

    Article  Google Scholar 

  • Moyle PB, Light T (1996) Fish invasions in California: do abiotic factors determine success? Ecology 77:1666–1670

    Article  Google Scholar 

  • Nunn AD, Tewson LH, Cowx IG (2012) The foraging ecology of larval and juvenile fishes. Rev Fish Biol Fish 22:377–408

    Article  Google Scholar 

  • Oksanen J et al. (2019). vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan

  • Oliveira AG, Baumgartner MT, Gomes LC, Dias RM, Agostinho AA (2018) Long-term effects of flow regulation by dams simplify fish functional diversity. Freshw Biol 63(3):293–305. https://doi.org/10.1111/fwb.13064

    Article  CAS  Google Scholar 

  • Ota RR, Deprá GDC, Graça WJD, Pavanelli CS (2018) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop Ichthyol 16(2):e170094. https://doi.org/10.1590/1982-0224-20170094

    Article  Google Scholar 

  • Parsons M, McLoughlin CA, Kotschy KA, Rogers KH, Rountree MW (2005) The effects of extreme floods on the biophysical heterogeneity of river landscapes. Front Ecol Environ 3(9):487–494. https://doi.org/10.2307/3868636

    Article  Google Scholar 

  • Pereira LS, Tencatt LFC, Dias RM, Oliveira AG, Agostinho AA (2017) Effects of long and short flooding years on the feeding ecology of piscivorous fish in floodplain river systems. Hydrobiologia 795:65–80. https://doi.org/10.1007/s10750-017-3115-5

    Article  Google Scholar 

  • Petry AC, Agostinho AA, Gomes LC (2003) Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotrop Ichthyol 1(2):111–119

    Article  Google Scholar 

  • QGIS Development Team (2018) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • R Core Team, 2020. The R Project for Statistical Computing

  • Rejas D, Declerk S, Auwerkerken J, Tak P, Meester L (2005) Plankton dynamics in a tropical floodplain lake: fish, nutrients, and the relative importance of bottow-up and top-down control. Freshw Biol 50:52–69

    Article  CAS  Google Scholar 

  • Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz J Biol 69(2):717–725. https://doi.org/10.1590/S1519-69842009000300025

    Article  CAS  PubMed  Google Scholar 

  • Rocha PC (2002) Dinâmica dos Canais no Sistema Rio-Planície Fluvial do Alto Rio Paraná, nas proximidades de Porto Rico. Tese (Doutorado em Ecologia de Ambientes Aquáticos Continentais) – Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá. Maringá, 2002.

  • Rodrigues AC, Santos NCL, Gomes LC (2020) Functionally redundant communities do not show differences in the main environmental drivers of different diversity metrics. Aquat Sci 82:52. https://doi.org/10.1007/s00027-020-00727-x

    Article  CAS  Google Scholar 

  • Rolls RJ, Ellison T, Faggotter S, Roberts DT (2013) Consequences of connectivity alteration on riverine fish assemblages: potential opportunities to overcome constraints in applying conventional monitoring designs. Aquat Conserv Mar Freshw Ecosys 23(4):624–640

    Article  Google Scholar 

  • Root RB (1967) The niche exploitation pattern of the blue-grey gnatcatcher. Ecol Monogr 37:317–350. https://doi.org/10.2307/1942327

    Article  Google Scholar 

  • Schindler S, Sebesvari Z, Damm C et al (2014) Multifunctionality of floodplain landscapes: relating management options to ecosystem services. Land Ecol 29:229–244. https://doi.org/10.1007/s10980-014-9989-y

    Article  Google Scholar 

  • Schwartz NB, Budsock AM, Uriarte M (2019) Fragmentation, forest structure, and topography modulates impacts of drought in a tropical forest landscape. Ecology 100(6):e02677. https://doi.org/10.1002/ecy.2677

    Article  PubMed  Google Scholar 

  • Silva CB, Dias JD, Bialetzki A (2017) Fish larvae diversity in a conservation area of a neotropical floodplain: influence of temporal and spatial scales. Hydrobiologia 787:141–152

    Article  Google Scholar 

  • Souza MC, Cislinski J, Romagnolo MB (1997). Levantamento florístico. In: Vazzoler AEAM, Agostinho AA, Hahn NS (eds) A planície de inundação do alto Rio Paraná: aspectos físicos, biológicos e socioeconômicos. EDUEM, Maringá, pp. 343–368.

  • Souza FB, Santos ACA, Silva AT (2020) Trophic structure of ichthyofauna in streams of the Contas River basin, Brazil. Stud Neotrop Fauna Environ. https://doi.org/10.1080/01650521.2020.1809610

  • Souza-Filho EE, Rocha PC, Comunello E, Stevaux JC (2004) Effects of the Porto Primavera dam on the physical environment of the downstream floodplain. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The Upper Paraná River and its Floodplain: Physical aspects, Ecology and Conservation. Backhuys Publishers, Leiden, pp 55–74

    Google Scholar 

  • Souza-Filho EE, Comunello E, Rocha PC (2005) Flood extension in the Baía-Curutuba-Ivinheima complex of the Paraná River floodplain. In: Agostinho AA, Rodrigues L, Gomes LC, Thomaz SM, Miranda SL (eds) Structure and functioning of the upper Paraná River and its floodplain. EDUEM, Maringá, pp. 19–24

  • Souza-Filho EE (2009) Evaluation of the Parana River discharge control on Porto São José Fluviometric Station (State of Parana - Brazil). Braz J Biol 69(2, Suppl.): 631–637.

  • Stevaux JC, Corradini FA, Aquino S (2013) Connectivity processes and riparian vegetation of the upper Paraná River, Brazil. J S Am Earth Sci 46:113–121

    Article  Google Scholar 

  • Stockner JG, Rydin E, Hyenstrand P (2000) Cultural oligotropgication: causes and consequences for fisheries resources. Fisheries 25:7–14. https://doi.org/10.1577/1548-8446(2000)025%3c0007

    Article  Google Scholar 

  • Tanigushi H, Shigeru N, Tokeshi M (2003) Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshw Biol 48:718–728

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J North Ame Benthol Soci 29(1):118–146

    Article  Google Scholar 

  • Teixeira C, Tundisi JG, Kutner MB (1965). Plankton studies in a mangrove. In: The standing-stock and some ecological factors. Bol Inst Oceanogr 24:23–41

  • Thomaz SM, Pagioro TA, Bini LM, Roberto MC, Rocha A (2004) Limnological characterization of the aquatic environments and the influence of hydrometric levels. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Lenden, pp 75–102

    Google Scholar 

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13. https://doi.org/10.1007/s10750-006-0285-y

    Article  Google Scholar 

  • Thomaz S, Dibble E, Evangelista L, Higuti J, Bini L (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53:358–367

    Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Proc 14:16–17

    Article  Google Scholar 

  • Tonella LH, Dias RM, Vitorino Junior OB, Fugi R, Agostinho AA (2019) Conservation status and bio-ecology of Brycon orbignyanus (Characiformes: Bryconidae), an endemic fish species from the Paraná river basin (Brazil) threatened with extinction. Neotrop Ichthyol 17(3):e190030. https://doi.org/10.1590/1982-0224-20190030

    Article  Google Scholar 

  • Tonn WM (1990) Climate change and fish communities: a conceptual framework. Trans Am Fish Soci 119(2):337–352. https://doi.org/10.1577/1548-8659(1990)119%3c0337:CCAFCA%3e2.3.CO;2

    Article  Google Scholar 

  • Uieda VS, Motta RL (2007) Trophic organization and food web structure of southeastern Brazilian streams: a review. Acta Limnol Bras 19:15–30

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Ward J (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Conserv 83(3):269–278

    Article  Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47(4):517–539. https://doi.org/10.1046/j.1365-2427.2002.00893.x

    Article  Google Scholar 

  • Warfe DM, Barmuta LA (2006) Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150:141–154

    Article  Google Scholar 

  • Waring RH, Coops NC, Fan W, Nightingale JM (2006) MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the continuous U.S.A. Remote Sens Environ 103(2):218–226. https://doi.org/10.1016/j.rse.2006.05.007

  • Welcomme RL, Winemiller KO, Cowx IG (2006) Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Res App 22:377–396. https://doi.org/10.1002/rra.914

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. San Diego, Academic Press

  • Winemiller KO, Kelso-Winemiller LC (2003) Food habits of tilapiine cichllids of the Upper Zambezi River and floodplain during the descending phase of the hydrologic cycle. J Fish Biol 63:120–128. https://doi.org/10.1046/j.1095-8649.2003.00134.x

    Article  Google Scholar 

  • Zeni JO, Cassati L (2014) The influence of habitat homogenization on the trophic structure pf fish fauna in tropical streams. Hydrobiologia 726:259–270. https://doi.org/10.1007/s10750-013-1772-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) of Universidade Estadual de Maringá (UEM) for providing the samples and logistical support, the Pesquisas Ecológicas de Longa Duração (PELD) project financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for delivering the data, and Universidade Tecnológica Federal do Paraná (UTFPR—Campo Mourão/PR) for granting technical cooperation agreements with Nupélia (ACT 021/2019; ACT 018/2019). We would also like to thank CNPq for granting scholarships to TML, ACR, and AAA and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships to CMM, MHS, RMD, and MGB.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/ PROEX).

Author information

Authors and Affiliations

Authors

Contributions

TML, CMM, MHS, RMD, ACR, and MGB conceived and designed the investigation. TML, CMM, and MHS analyzed the data. All authors contributed to the writing and reviewing of the paper.

Corresponding author

Correspondence to Carolina Mendes Muniz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Instituto Chico Mendes de Conservação da Biodiversidade (SISBIO/ ICMBIO; License nº 22442–1) and the Ethics Board for the use of experimental animals of the Universidade Estadual de Maringá (CEUA; Technical Advice nº 1420221018/2018).

Consent to participate

N/A.

Consent to publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, T.M., Muniz, C.M., Schmitz, M.H. et al. Drivers of fish trophic guild composition in lakes of the Upper Paraná River floodplain. Aquat Sci 84, 27 (2022). https://doi.org/10.1007/s00027-022-00860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-022-00860-9

Keywords

Navigation