Log in

Fan Valuations and Spherical Intrinsic Volumes

  • Original Paper
  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We generalize valuations on polyhedral cones to valuations on (plane) fans. For fans induced by hyperplane arrangements, we show a correspondence between rotation-invariant valuations and deletion– restriction invariants. In particular, we define a characteristic polynomial for fans in terms of spherical intrinsic volumes and show that it coincides with the usual characteristic polynomial in the case of hyperplane arrangements. This gives a simple deletion–restriction proof of a result of Klivans–Swartz. The metric projection of a cone is a piecewise-linear map, whose underlying fan prompts a generalization of spherical intrinsic volumes to indicator functions. We show that these intrinsic indicators yield valuations that separate polyhedral cones. Applied to hyperplane arrangements, this generalizes a result of Kabluchko on projection volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. K. A. Adiprasito and R. Sanyal, An Alexander-type duality for valuations, Proc. Amer. Math. Soc., 143 (2015), pp. 833–843.

    Article  MathSciNet  Google Scholar 

  2. D. Amelunxen and M. Lotz, Intrinsic volumes of polyhedral cones: a combinatorial perspective, Discrete Comput. Geom., 58 (2017), pp. 371–409.

    Article  MathSciNet  Google Scholar 

  3. D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, Living on the edge: Phase transitions in convex programs with random data, Information and Inference: A Journal of the IMA, 3 (2014), pp. 224–294.

    Article  MathSciNet  Google Scholar 

  4. A. Barvinok, A course in convexity, vol. 54 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2002.

  5. A. Barvinok, Integer points in polyhedra, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.

  6. M. Beck and R. Sanyal, Combinatorial reciprocity theorems, vol. 195 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2018.

  7. A. Björner, The antiprism fan of a convex polytope, in Tagungsbericht: Combinatorial Convexity and Algebraic Geometry, vol. 41, Mathematisches Forschungsinstitut Oberwolfach, 1997, pp. 7–8. https://oda.mfo.de/bitstream/handle/mfo/264/full-text.pdf?sequence=1 &isAllowed=y.

  8. T. Brylawski and J. Oxley, The Tutte polynomial and its applications, in Matroid applications, vol. 40 of Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 1992, pp. 123–225.

  9. M. G. Dobbins, Antiprismlessness, or: reducing combinatorial equivalence to projective equivalence in realizability problems for polytopes, Discrete Comput. Geom., 57 (2017), pp. 966–984.

    Article  MathSciNet  Google Scholar 

  10. R. Ehrenborg and M. A. Readdy, On valuations, the characteristic polynomial, and complex subspace arrangements, Adv. Math., 134 (1998), pp. 32–42.

    Article  MathSciNet  Google Scholar 

  11. C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc., 280 (1983), pp. 97–126.

    Article  MathSciNet  Google Scholar 

  12. H. Groemer, On the extension of additive functionals on classes of convex sets, Pacific J. Math., 75 (1978), pp. 397–410.

    Article  MathSciNet  Google Scholar 

  13. P. M. Gruber and R. Schneider, Problems in geometric convexity, in Contributions to geometry (Proc. Geom. Sympos., Siegen, 1978), Birkhäuser, Basel-Boston, Mass., 1979, pp. 255–278.

  14. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

    Google Scholar 

  15. D. Hug and Z. Kabluchko, An inclusion-exclusion identity for normal cones of polyhedral sets, Mathematika, 64 (2018), pp. 124–136.

    Article  MathSciNet  Google Scholar 

  16. Z. Kabluchko, An identity for the coefficients of characteristic polynomials of hyperplane arrangements, Discrete Comput. Geom., 70 (2023), pp. 1476–1498.

    Article  MathSciNet  Google Scholar 

  17. D. A. Klain and G.-C. Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997.

  18. C. J. Klivans and E. Swartz, Projection volumes of hyperplane arrangements, Discrete Comput. Geom., 46 (2011), pp. 417–426.

    Article  MathSciNet  Google Scholar 

  19. J. Lawrence, Three rings of polyhedral simple functions, 2006-03-01 2006.

  20. B. Lindström, Problem p73, Aequations mathematicae, 6 (1971), p. 113.

    Google Scholar 

  21. D. Lofano and G. Paolini, Euclidean matchings and minimality of hyperplane arrangements, Discrete Math., 344 (2021), pp. 112232, 22.

  22. P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes, Math. Proc. Cambridge Philos. Soc., 78 (1975), pp. 247–261.

    Article  MathSciNet  Google Scholar 

  23. J.-J. Moreau, Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), pp. 238–240.

  24. G. T. Sallee, Polytopes, valuations, and the Euler relation, Canadian Journal of Mathematics, 20 (1968), pp. 1412–1424.

    Article  MathSciNet  Google Scholar 

  25. R. Schneider, Convex bodies: the Brunn-Minkowski theory, vol. 151 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, expanded ed., 2014.

  26. R. Schneider, Polyhedral Gauss-Bonnet theorems and valuations, Beitr. Algebra Geom., 59 (2018), pp. 199–210.

    Article  MathSciNet  Google Scholar 

  27. R. P. Stanley, Enumerative combinatorics. Volume 1, vol. 49 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, second ed., 2012.

  28. G. M. Ziegler, Lectures on polytopes, vol. 152 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995.

Download references

Acknowledgements

Work on this project started at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester on Geometric and Topological Combinatorics. The authors acknowledge support by National Science Foundation under Grant No. DMS-1440140 during our stay at the MSRI as well as from the DFG-Collaborative Research Center, TRR 109 “Discretization in Geometry and Dynamics”. The first author was supported by a Simons Collaboration Gift No. 854037 and NSF Grant (DMS-2246967). The authors thank the referee for suggestions that helped improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer Backman.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Alexander Yong

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backman, S., Manecke, S. & Sanyal, R. Fan Valuations and Spherical Intrinsic Volumes. Ann. Comb. (2024). https://doi.org/10.1007/s00026-024-00699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00026-024-00699-x

Keywords

Mathematics Subject Classification

Navigation