Log in

Bipartite Sets of Spheres and Casey-Type Theorems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A bipartite set of spheres in \({\mathbb {R}}^n\) is a set of colored spheres, where two colors are used, no sphere is contained in the closed ball bounded by another sphere in the set, and spheres of different colors are disjoint. For any two spheres in a bipartite set, the common-tangent distance between them is defined as the distance between two tangent points in a common tangent hyperplane to them, where an external common tangent hyperplane is taken if the two spheres are of the same color; otherwise, a common internal tangent hyperplane is taken. By this common-tangent distance, a bipartite set becomes a semi-metric space. It turns out that bipartite sets of spheres form an interesting family of semi-metric spaces. Casey’s theorem (a generalization of Ptolemy’s theorem) gives a condition for a bipartite set of four circles in \({\mathbb {R}}^2\) to have a circle that is suitably tangent to all circles in the bipartite set. Ptolemy’s theorem is generalized to the n-dimensional situation via Cayley–Menger determinants. Among other results, we present a Casey-type theorem for a bipartite set of \(n+2\) spheres in n dimensions as a generalization of the n-dimensional version of Ptolemy’s theorem, and we extend this further to a bipartite set with an arbitrary number of spheres in \({\mathbb {R}}^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abroshimov, N.V., Aseev, V.V.: Generalizations of Casey’s theorem for higher dimensions. Lobachevskii J. Math. 39, 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  2. Abrosimov, N.V., Mikaiylova, L.A.: Casey’s theorem in hyperbolic geometry. Sib. Èlektron. Mat. Izv. 12, 354–360 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Berger, M.: Geometry I. Springer, Berlin (1987)

    Book  Google Scholar 

  4. Blumenthal, L.: Theory and Applications of Distance Geometry. Clarendon Press, Oxford (1953)

    MATH  Google Scholar 

  5. Bottema, O.: Topics in Elementary Geometry, 2nd edn, translated from the 1987 Dutch edition by Reinie Erné. Springer, New York (2008)

  6. Bowers, J.C., Bowers, P.: A Menger redux: embedding metric spaces isometrically in Euclidean spaces. Am. Math. Monthly 124(7), 621–636 (2017)

    Article  MathSciNet  Google Scholar 

  7. Casey, J.: On the equations and properties: (1) of the system of circles touching three circles in a plane; (2) of the system of spheres touching four spheres in space; (3) of the system of circles touching three circles on a sphere; (4) of the system of conics inscribed to a conic, and touching three inscribed conics in a plane. Proc. R. Ir. Acad. (1836–1869) 9, 396–423 (1864)

    Google Scholar 

  8. Casey, J.: A Sequel to the First Six Books of the Elements of Euclid Containing an Easy Introduction to the Modern Geometry. With Numerous Examples. University Press, Dublin (1881). JFM 13.0436.02

    MATH  Google Scholar 

  9. Coolidge, J.L.: A Treatise on the Geometry of the Circle and the Sphere. Chelsea Publishing Company, New York (1971)

    MATH  Google Scholar 

  10. D’Andrea, C., Sombra, M.: The Cayley–Menger determinant is irreducible for $n\ge 3$. Sib. Math. J. 46, 71–76 (2005)

    Article  Google Scholar 

  11. Eves, H.W.: Fundamentals of Geometry. Allyn and Bacon, Boston (1969)

    MATH  Google Scholar 

  12. Fukagawa, H., Pedoe, D.: San Gaku-Japanese Temple Geometry Problems. The Charles Babbage Research Center, Winnipeg (1989)

    Google Scholar 

  13. Fukuzo, S., Yoshimasa, M.: On Hōdoji’s “Sanhenh” and Casey’s inversion theorem (Japanese). Sūgakushi Kenkyū 116, 62–77 (1988)

    MATH  Google Scholar 

  14. Gregorac, R.J.: Feuerbach’s relation and Ptolemy’s theorem in ${{\mathbb{R}}}^n$. Geom. Dedic. 60(1), 65–88 (1996)

    Article  MathSciNet  Google Scholar 

  15. Gueron, S.: Two applications of the generalized Ptolemy theorem. Am. Math. Monthly 109(4), 362–370 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hayashi, T.: Un théorème de Casey en mathématiques japonaises. Tôhoku Math. J. 1, 204–206 (1912). JFM 43.0582.06

    MATH  Google Scholar 

  17. Johnson, R.A.: Advanced Euclidean Geometry. Dover Publications Inc., New York (2007)

    Google Scholar 

  18. Kostin, A.V., Kostina, N.N.: An interpretation of Casey’s theorem and of its hyperbolic analogue (Russian. English summary). Sib. Èlektron. Mat. Izv. 13 (2916), 242–251

  19. Kubota, T.: On the extended Ptolemy’s theorem in hyperbolic geometry. Sci. Rep. Tôhoku Univ. 1, 131–156 (1912)

    Google Scholar 

  20. Kurnik, Z., Volenec, V.: Die Verallgemeinerungen des Ptolemäischen Satzes und einiger seiner Analoga in der euklidischen und den nichteuklidischen Geometrien (German. Serbo-Croatian summary). Glasnik Mat. Ser. III 2(22), 213–243 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Kurnik, Z., Volenec, V.: Neue Verallgemeinerungen der Ptolemäischen Relationen in der euklidischen und den nichteuklidischen Geometrien (German. Serbo-Croatian summary). Glasnik Mat. Ser. III 3(23), 77–86 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Liberti, L., Lavor, C.: Six mathematical gems from the history of distance geometry. Int. Trans. Oper. Res. 23, 899–920 (2016)

    Article  MathSciNet  Google Scholar 

  23. Maehara, H., Tokushige, N.: From line-systems to sphere systems—Schläfli’s double six, Lie’s line-sphere transformation, and Grace’s theorem. Eur. J. Combin. 30, 1337–1351 (2009)

    Article  Google Scholar 

  24. Menger, K.: New foundation of Euclidean geometry. Am. J. Math. 53(4), 721–745 (1931)

    Article  MathSciNet  Google Scholar 

  25. Mikami, Y.: Casey’s theorem in Japanese mathematics. Tôhoku Math. J. 15, 289–296 (1919). JFM 47.0028.05

    MATH  Google Scholar 

  26. Reuschel, A.: Berührungseigenschaften des Feuerbachkreises. Zusammenhang zwischen der Caseyschen Verallgemeinerung des Satzes. Praxis Math. 18(1), 3–10 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Taylor, J.H.: A Euclidean proof of Casey’s extension of Ptolemy’s theorem. Quart. J. 26, 228–231 (1893)

    MATH  Google Scholar 

  28. van Gruting, C.J.: Some remarks on properties of triangles and circles in elliptic geometry, II (Dutch). Simon Stevin 28, 13–39 (1951)

    MathSciNet  Google Scholar 

  29. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics, 2nd edn. Chapman & Hall, Boca Raton (2003)

    MATH  Google Scholar 

  30. Zacharias, M.: Der Caseysche Satz. Jber. Deutsch. Math. Verein. 52, 79–89 (1942)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Maehara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, H., Martini, H. Bipartite Sets of Spheres and Casey-Type Theorems. Results Math 74, 47 (2019). https://doi.org/10.1007/s00025-019-0973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-0973-3

Keywords

Mathematics Subject Classification

Navigation