Log in

Tsunami Genesis of Strike-Slip Earthquakes Revealed in the 2018 Indonesian Palu Event

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The devastating tsunami after the 2018 Indonesian Sulawesi-Palu strike-slip earthquake was a surprise because strike-slip faulting was a known phenomenon of primarily lateral movement of land, while tsunamis were believed to be caused by vertical movements of seafloor or landslides. Here we demonstrated how the strike-slip faulting could have pushed waters from outside and inside the Palu Bay to form a powerful tsunami in the Palu Bay. We constructed three earthquake inversions from seismographs, satellite radar and optical imagery, and used an open-source ocean circulation model to replicate the tsunami. Our experiments revealed that: (1) the southward horizontal displacement of deeper-water slopes along the Makassar coast generated a long-wave tsunami of 40 km, propagating southward into the Palu Bay and consisting with the two distinguished tsunami-peaks in the Pantoloan tide-record, twice higher than the local resonance waves; (2) the two types of tsunamis in the Mamuju tide-record—the “early arrival” tsunami and the late larger tsunami—were originated from the outside and inside sources; and (3) the eyewitness account of the whirlpool circulation in the Palu Bay could be explained by the horizontal strike-slip forcing of the two involved tectonic plates. The east plate was largely responsible for pushing the long-wave tsunami southward that inundated the Palu City and resulted in the devastation. Our findings suggest that the tsunami’s behavior of strike-slip earthquakes is more complex than previously thought and should be considered in future tsunami early warnings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data sets used in this study are publicly available. InSAR data from https://asf.alaska.edu/data-sets/derived-data-sets/insar/insar-find-data/, and optical imagery data from https://sentinel.esa.int/web/sentinel/missions/sentinel-2. Raw seismic data were downloaded from https://ds.iris.edu/wilber3/find_event. The tide gauge data are available at https://doi.org/10.6084/m9.figshare.12847886.v1. Figures were prepared using Matlab (https://www.mathworks.com/products/matlab.html), a licensed software to JPL.

References

  • Abe, K. (1973). Tsunami and mechanism of great earthquakes. Physics of the Earth and Planetary Interiors, 7, 143–153.

    Article  Google Scholar 

  • Aránguiz, R., Esteban, M., Takagi, H., Mikami, T., Takabatake, T., Gómez, M., González, J., Shibayama, T., Okuwaki, R., Yagi, Y., & Shimizu, K. (2020). The 2018 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2020.1780719

    Article  Google Scholar 

  • Arikawa, T., Muhari, A., Okumura, Y., Dohi, Y., Afriyanto, B., Sujatmiko, K., & Imamura, F. (2018). Coastal subsidence induced several tsunamis during the 2018 sulawesi earthquake. Journal of Disaster Research, 13, 1–3.

    Article  Google Scholar 

  • Bao, H., Ampuero, J. P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W., Feng, T., & Huang, H. (2019). Early and persistent supershear rupture of the 2018 Mw 7.5 Palu earthquake. Nature Geoscience. https://doi.org/10.1038/s41561-018-0297-z

    Article  Google Scholar 

  • Carvajal, M., Araya-Cornejo, C., Sepúlveda, I., Melnick, D., & Haase, J. S. (2019). Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake. Geophysical Research Letters, 46, 5117–5126. https://doi.org/10.1029/2019GL082578

    Article  Google Scholar 

  • Chen, K., Liu, Z., & Song, Y. T. (2019). Automated GNSS and teleseismic earthquake inversion (AutoQuake Inversion) for tsunami early warning: Retrospective and real-time results. PAAG. https://doi.org/10.1007/s00024-019-02252-x

    Article  Google Scholar 

  • Clement, J., & Reymond, D. (2014). New Tsunami forecast tools for the French Polynesia Tsunami warning system part I: Moment tensor, slowness and seismic source inversion. Pure and Applied Geophysics, 171, 1089. https://doi.org/10.1007/s00024-014-0888-6

    Article  Google Scholar 

  • Elbanna, A., Abdelmeguid, M., Ma, X., Amlani, F., Bhat, H. S., Synolakis, C., & Rosakis, A. J. (2021). Anatomy of strike-slip fault tsunami genesis. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2025632118

    Article  Google Scholar 

  • Frederik, M. C. G., Udrekh, U., Adhitama, R., Hananto, D., Asrafil, A., Sahabuddin, S., Irfan, M., Moefti, O., Putra, B., & Riyalda, B. F. (2019). First Results of a Bathymetric Survey of Palu Bay, Central Sulawesi, Indonesia following the Tsunamigenic Earthquake of 28 September 2018. Pure and Applied Geophysics, 176(2019), 3277–3290. https://doi.org/10.1007/s00024-019-02280-7

    Article  Google Scholar 

  • Geist, E. L. (2000). Origin of the 17 July 1998 Papua New Guinea Tsunami: Earthquake or landslide. Seismological Research Letters, 71(3), 344–351. https://doi.org/10.1785/gssrl.71.3.34

    Article  Google Scholar 

  • Heidarzadeh, M., & Mulia, I. E. (2023). A new dual earthquake and submarine landslide source model for the 28 September 2018 Palu (Sulawesi), Indonesia Tsunami. Coastal Engineering Journal,. https://doi.org/10.1080/21664250.2022.2122293

    Article  Google Scholar 

  • Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., & Takagawa, T. (2017). Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 M w7. 8 event and its relationship with the April 2012 M w 8.6 event. Geophysical Journal International, 211(3), 1601–1612. https://doi.org/10.1093/gji/ggx395

    Article  Google Scholar 

  • Heidarzadeh, M., Muhari, A., & Wijanarto, A. (2019). Insights on the source of the 28 September 2018 Sulawesi Tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176(1), 25–43. https://doi.org/10.1007/s00024-018-2065-9

    Article  Google Scholar 

  • Ho, T.-C., Satake, K., Watada, S., Hsieh, M.-C., Chuang, R. Y., Aoki, Y., Mulia, I. E., Gusman, A. R., & Lu, C. H. (2021). Tsunami induced by the strike-slip fault of the 2018 Palu earthquake (Mw = 7.5) Sulawesi Island Indonesia. Earth and Space Science. https://doi.org/10.1029/2020EA001400

    Article  Google Scholar 

  • Hoffmann, T., Triyono, R., Weniza, A., Heryandoko, N., Daniarsyad, G., Karyono, A., et al. (2018), The 2018 Mw 7.5 Sulawesi Indonesia earthquake: The immediate response of the InaTEWS Warning Centre at BMKG and related operational issues. Paper presented at the Fall Meeting, AGU, Washington DC, December 10‐14, 2018.

  • Jamelot, A., Gaiiller, A., Heinrich, Ph., Vallage, A., & Champenois, J. (2019). Tsunami simulations of the Sulawesi Mw 7.5 event: Comparison of seismic sources issued from a tsunami warning context versus post-event finite source. Pure and Applied Geophysics, 176, 3351–3376. https://doi.org/10.1007/s00024-019-02274-5

    Article  Google Scholar 

  • Lacassin, R., Devès, M., Hicks, S. P., Ampuero, J.-P., Bossu, R., Bruhat, L., Daryono, Wibisono, D. F., Fallou, L., Fielding, E. J., Gabriel, A.-A., Gurney, J., Krippner, J., Lomax, A., Sudibyo, Muh, M., Pamumpuni, A., Patton, J. R., Robinson, H., … Valkaniotis, S. (2020). Rapid collaborative knowledge building via Twitter after significant geohazard events. Geoscience Communication, 3, 129–146. https://doi.org/10.5194/gc-3-129-2020

    Article  Google Scholar 

  • Liu, P., Higuera, P., Husrin, S., Prasetya, G. S., Prihantono, J., Diastomo, H., & Susmoro, H. (2020). Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides. https://doi.org/10.1007/s10346-020-01417-3

    Article  Google Scholar 

  • Muhari, A., Imamura, F., Arikawa, T., Hakim, A., & Afriyanto, B. (2018). Solving the puzzle of the september 2018 Palu, Indonesia, tsunami mystery: Clues from the tsunami waveform and the initial field survey data. Journal of Disaster Research, 13, 20181108–9.

    Article  Google Scholar 

  • Nakata, K., Katsumata, A., & Muhari, A. (2020). Submarine landslide source models consistent with multiple tsunami records of the 2018 Palu tsunami, Sulawesi, Indonesia. Earth, Planets and Space, 72, 1–16. https://doi.org/10.1186/s40623-020-01169-3

    Article  Google Scholar 

  • Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., Proietti, C., Probst, P., Paparo, M. A., Wronna, M., & Zaytsev, A. (2019). The September 28th, 2018, Tsunami In Palu-Sulawesi, Indonesia: A post-event field survey. Pure and Applied Geophysics, 176, 1379–1395. https://doi.org/10.1007/s00024-019-02145-z

    Article  Google Scholar 

  • Oreskes, N. (2003). Plate tectonics: An insider’s history of the modern theory of the Earth. Boca Raton: CRC Press Taylor and Francis Group.

    Google Scholar 

  • Paprotny, D., Andrzejewski, P., Terefenko, P., & Furmanczyk, K. (2014). Application of empirical wave run-up formulas to the polish Baltic sea coast. PLoS One, 9(8), e105437. https://doi.org/10.1371/journal.pone.0105437

    Article  Google Scholar 

  • Pond, S., & Pickard, G. L. (1983). Introductory dynamical oceanography (2nd ed., p. 329). Butterworth-Heinemann.

    Google Scholar 

  • Prasetya, G. S., De Lange, W. P., & Healy, T. R. (2001). The makassar strait tsunamigenic region, Indonesia. Natural Hazards, 24, 295–307. https://doi.org/10.1023/A:1012297413280

    Article  Google Scholar 

  • Pribadi, S., Gunawan, I., Nugraha, J. et al. (2018). Tsunami survey on Palu bay 2018. Survey report presentation, http://itic.iocunesco.org/index.php?option=com_content&view=article&id=2039&Itemid=2845. Accessed 15 Oct 2018.

  • Riquelme, S., & Fuentes, M. (2021). Tsunami efficiency due to very slow earthquakes. Seismological Research Letters. https://doi.org/10.1785/0220200198

    Article  Google Scholar 

  • Sassa, S., & Takagawa, T. (2019). Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides, 16(1), 195–200.

    Article  Google Scholar 

  • Satake, K. (1995). Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. PAGEOPH, 144, 455–470.

    Article  Google Scholar 

  • Sepúlveda, I., Haase, J. S., Carvajal, M., Xu, X., & Liu, P. L. F. (2020). Modeling the sources of the 2018 Palu, Indonesia, tsunami using videos from social media. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2019JB018675

    Article  Google Scholar 

  • Shokin, Y. I., L. B. Chubarov, V. A. Novikov, A. N. Sudakov (1987). Calculations of tsunami travel times in the Pacific Ocean (models, algorithms, techniques, results), Science of Tsunami Hazards, Vol. 5(2).

  • Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience. https://doi.org/10.1038/s41561-018-0296-0

    Article  Google Scholar 

  • Song, Y. T. (2007). Detecting tsunami genesis and scales directly from coastal GPS stations. Geophysical Research Letters, 34, L19602. https://doi.org/10.1029/2007GL031681

    Article  Google Scholar 

  • Song, Y., & Haidvogel, D. (1994). A semi-implicit primitive equation ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115, 228–244.

    Article  Google Scholar 

  • Song, Y. T., & Han, S. C. (2011). Satellite observations defying the long-held tsunami genesis theory. In D. L. Tang (Ed.), Remote sensing of the changing oceans. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Song, Y. T., Fu, L.-L., Zlotnicki, V., Ji, C., Hjorleifsdottir, V., Shum, C. K., & Yi, Y. (2008). The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 Tsunami. Ocean Modelling. https://doi.org/10.1016/j.ocemod.2007.10.007

    Article  Google Scholar 

  • Song, Y. T., Fukumori, I., Shum, C. K., & Yi, Y. (2012). Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean. Geophysical Research Letters. https://doi.org/10.1029/2011GL050767. Nature Highlights article on March 8, 2012.

    Article  Google Scholar 

  • Song, Y. T., Mothat, A., & Yim, S. (2017). New insights on tsunami genesis and energy source. Journal of Geophysical Research: Oceans. https://doi.org/10.1002/2016JC012556

    Article  Google Scholar 

  • Song, Y. T., & Hou, T. Y. (2006). Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling. Ocean Modelling. https://doi.org/10.1016/j.ocemod.2005.01.001

    Article  Google Scholar 

  • Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., Newman, J. C., Mofjeld, H., Arcas, D., Eble, M., Moore, C., Uslu, B., Pells, C., Spillane, M. C., Wright, L. M., & Gica, E. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117, C08008. https://doi.org/10.1029/2011JC007635

    Article  Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861–864.

    Article  Google Scholar 

  • Titov, V., Song, Y. T., Tang, L., Bernard, E. N., Bar-Sever, Y., & Wei, Y. (2016). Consistent estimates of tsunami energy show promise for improved early warning. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-016-1312-1

    Article  Google Scholar 

  • Toffoli, A., & Bitner-Gregersen, E. M. (2017). Types of ocean surface waves, wave classification, encyclopedia of maritime and offshore. Engineering. https://doi.org/10.1002/9781118476406.emoe077

    Article  Google Scholar 

  • Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., Van Zelst, I., Fielding, E. J., Liang, C., & Gabriel, A. A. (2019). Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi Tsunami. Pure and Applied Geophysics, 176, 4069–4109.

    Article  Google Scholar 

Download references

Acknowledgements

The research described here was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contracts with the National Aeronautics and Space Administration (NASA). The work of Prasetya was funded by The Tsunami Research Foundation of Indonesia and Chen was funded by National Science Foundation of China (Grant No. 42074024). We thank Dwi Susanto for providing the early version of the tide data and Widjo Kongko for the bathymetric data.

Author information

Authors and Affiliations

Authors

Contributions

YS wrote the main manuscript text. KC conducted the earthquake modeling. GP contributed and examined the tsunami and survey data. All authors were involved in interpreting the results and contributed to improving the manuscript.

Corresponding author

Correspondence to Y. Tony Song.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9846 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.T., Chen, K. & Prasetya, G. Tsunami Genesis of Strike-Slip Earthquakes Revealed in the 2018 Indonesian Palu Event. Pure Appl. Geophys. 180, 1909–1923 (2023). https://doi.org/10.1007/s00024-023-03295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03295-x

Keywords

Navigation