Log in

Detection of Aquifer Recharge Zones in Isolated Wetlands: Comparative Analysis Among Electrical Resistivity Tomography Arrays

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

For the evaluation of the internal water fluxes of wetlands and comprehension of their function within the hydrological cycle, the electrical resistivity tomography technique is a high-performance tool for the modeling of hydrodynamic environments, comprising data acquisition procedures based on transmission and reception sensors of electric potential fields as a result of predetermined configuration and the selection of arrays. The utilization of appropriate arrays is fundamental to obtaining data that truly represent the local geology, while an incorrect geometric configuration of electrodes might lead to failure to detect anomalies, impacting the comprehension of the dynamic processes. This research was conducted to make a comparative analysis of electrical resistivity tomography data acquired through Schlumberger, Wenner, and dipole–dipole arrays, which were supported by direct soil hydraulic conductivity data and vegetation analysis, allowing the correlation of surface infiltration zones and their continuity in depth, making possible an evaluation of the array that best represents the study area in terms of soil, rock, and flux dynamics. The results revealed the Schlumberger array as the best electrode configuration for modeling, with the best correlation with direct surface data, which might be explained by the predominance of a horizontalized potential electric field flux, good signal-to-noise ratio, and discrimination capacity of vertical flux structures. Therefore, the results indicate the existence of a structure of water access and direct recharge for the regional aquifer (Tubarão aquifer system), characterized as a closed topographic depression located in a region of sugarcane farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

All experimental data are available from the authors.

Data and Material Availability

Not relevant.

References

  • ARARAS. https://araras.sp.gov.br/historia/. Access 02 Dec 2019.

  • Ab' saber, A.N (1969a). A Depressão Periférica Paulista: Um setor das áreas de circundesnudação pós-cretácica da Bacia do Paraná. Universidade de São Paulo, Instituto de Geografia, 15, l5.

  • Abem, A. I. (2012). ABEM Instrument Sundbyberg: Sundbyberg. Terrameter LS Instruction Manual.

  • ABGE -Associação Brasileira de Geologia de Engenharia. (2013). Ensaios de Permeabilidade em solos orientações para sua execução no campo.

  • Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S., & Uhuegbu, C. C. (2011). Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles. International Journal of the Physical Sciences, 6, 5623–5647.

    Google Scholar 

  • Amini, A., & Ramazi, H. (2016). Application of electrical resistivity imaging for engineering site investigation. A case study on prospective hospital site, Varamin, Iran. Acta Geophysica, 64(4), 2200–2213. https://doi.org/10.1515/acgeo-2016-0100

    Article  Google Scholar 

  • Araffa, S. A. S., Abdelazeem, M., Sabet, H. S., & Al Dabour, A. M. (2021). Hydrogeophysical investigation at El Moghra Area, Northwestern Desert, Egypt. Environmental Earth Sciences, 80, 55. https://doi.org/10.1007/s12665-020-09332-5

    Article  Google Scholar 

  • Assine, M. L., Zacharias, A. A., & Perinotto, J. A. J. (2003). Paleocorrentes, paleogeografia e sequencias deposicionais da Formação Tatuí, centro-leste do Estado de São Paulo. Revista Brasileira De Geociências, 33(1), 33–40.

    Article  Google Scholar 

  • Barker, R. D. (1981). The offset system of electrical resistivity sounding and its use with a milticore cable. Geophysycal Prospecting. https://doi.org/10.1111/j.1365-2478.1981.tb01015.x

    Article  Google Scholar 

  • Boubaya, D. (2017). Combining resistivity and aeromagnetic geophysical surveysfor groundwater exploration in the Maghnia Plain of Algeria. Journal of Geological Research. https://doi.org/10.1155/2017/1309053

    Article  Google Scholar 

  • Butler, D. K. (2005). Near-surface geophysics. Society of Exploration Geophysicists.

    Book  Google Scholar 

  • Calhoun, A. J. K., Mushet, D. M., Alexander, L. C., DeKeyser, E. S., Fowler, L., Lane, C. R., Lang, M. W., Rains, M. C., Richter, S. C., & Walls, S. C. (2017). The significant surface-water connectivity of ‘Geographically Isolated Wetlands.’ Wetlands, 37, 801–806.

    Article  Google Scholar 

  • Casagrande, M. F. S., Furlan, L. M., Moreira, C. A., Rosa, F. T. G., & Rosolen, V. (2021). Non-invasive methods in the identification of hydrological ecosystem services of a tropical isolated wetland (Brazilian study case). Environmental Challenges. https://doi.org/10.1016/j.envc.2021.100233

    Article  Google Scholar 

  • Casagrande, M. F. S., Moreira, C. A., & Targa, D. A. (2019). Study of generation and underground flow of acid mine drainage in waste rock pile in an uranium mine using electrical resistivity tomography. Pure and Applied Geophysics, 177, 703–721.

    Article  Google Scholar 

  • Castellano, M. J., Schmidt, J. P., Kaye, J. P., Walker, C., Graham, C. B., Lin, H., & Dell, C. J. (2010). Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape. Global Change Biology, 16, 2711–2720. https://doi.org/10.1111/j.1365-2486.2009.02116.x

    Article  Google Scholar 

  • CBH-MOGI, COMITÊ DA BACIA HIDROGRÁFICA DO RIO MOGI GUAÇU. (2017). Relatório de Situação dos Recursos Hídricos 2017-ano base 2016. 119 p. Aprovado pela Deliberação CBH-MOGI nº 172, de 27 de junho de 2017. www.sigrh.sp.gov.br.

  • Coscia, I., Linde, N., Greenhalgh, S., Vogt, T., & Green, A. (2012). Estimating traveltimes and groundwater flow patterns using 3D time-lapse crosshole ERT imaging of electrical resistivity fluctuations induced by infiltrating river water. Geophysics, 77, 239–250. https://doi.org/10.1190/geo2011-0328.1

    Article  Google Scholar 

  • Cowardin, L. M., Carter, V., Golet, F. C., & LaRoes, E. T. (1979). Classification of wetlands and deepwater habitats of the United States FWS/OBS-79/31 (p. 103). US Fish and Wildlife Service.

    Book  Google Scholar 

  • CPRM-SERVIÇO GEOLÓGICO DO BRASIL. (2018) Sistema de Informações de Águas Subterrâneas-SIAGAS. http://siagasweb.cprm.gov.br/layout/. Accessed 2018.

  • DAEE, IPT, CPRM. (2005). Mapa de águas subterrâneas do Estado de São Paulo: Escala 1:1.000.000: Nota explicativa/[coordenação geral Gerôncio Rocha]. São Paulo: DAEE Departamento de Águas e Energia Elétrica: IG-Instituto Geológico: IPT Instituto de Pesquisas Tecnológicas do Estado de São Paulo: CPRM Serviço Geológico do Brasil.

  • Dahlin, T. (1996). 2D resistivity surveying for environmental and engineering applications. First Break, 14(7), 275–283.

    Article  Google Scholar 

  • Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52(5), 379–398.

    Article  Google Scholar 

  • De Groot-Hedlin, C., & Constable, S. (1990). Occam’s Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data. Geophysics, 55, 1613–1624. https://doi.org/10.1190/1.1442813

    Article  Google Scholar 

  • De-Campos, A. B., Cedro, D. A. B., Tejerina-Garro, F. L., Bayer, M., & Carneiro, G. T. (2011). Spatial distribution of tropical wetlands in Central Brazil as influenced by geological and geomorphological settings. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2011.12.001

    Article  Google Scholar 

  • Edwards, L. S. (1977). A modified pseudosection for resistivity and introduce-polarization. Geophysics, 42(5), 1010–1036.

    Article  Google Scholar 

  • Everard, M., Kangabam, R., Tiwari, M. K., et al. (2019). Ecosystem service assessment of selected wetlands of Kolkata and the Indian Gangetic Delta: Multi-beneficial systems under differentiated management stress. Wetlands Ecology and Management, 27, 405–426. https://doi.org/10.1007/s11273-019-09668-1

    Article  Google Scholar 

  • Finlayson, C., D’Cruz, R., & Davidson, N. (2005). Millenium ecosystem assessment. Ecosystems and human well-being: Wetlands and water. Synthesis. World Resources Institute.

    Google Scholar 

  • Furlan, L. M., Rosolen, V., Salles, J., Moreira, C. M., Ferreira, M. E., Bueno, G. T., Coelho, C. V. S., & Mounier, S. (2020). Natural superficial water storage and aquifer recharge assessment in Brazilian Savana wetland using unmanned aerial vehicle and geophysical survey. Journal of Unmanned Vehicle Systems. https://doi.org/10.1139/juvs-2020-0004

    Article  Google Scholar 

  • Furman, A., Ferré, T. P., & Warrick, A. W. A. (2003). Sensitivity analysis of electrical resistivity tomography array types using analytical element modeling. Vadose Zone Journal, 2(3), 416–423. https://doi.org/10.2113/2.3.416

    Article  Google Scholar 

  • Gabrielsen, C. G., Murphy, M. A., & Evans, J. S. (2016). Using a multiscale, probabilistic 569 approach to identify spatial-temporal wetland gradients. Remote Sensing of Environment, 184, 522–538. https://doi.org/10.1016/j.rse.2016.07.034

    Article  Google Scholar 

  • Gajjar, J., & Solanki, H. (2021). A review: Wetlands as treasure of earth by providing ecological benefits, threats to wetlands and conservation of wetlands. International Journal of Scientific Research in Science and Technology. https://doi.org/10.32628/IJSRST218227

    Article  Google Scholar 

  • GEOTOMO SOFTWARE. (2020). https://www.geotomosoft.com/.

  • Gilvear, D. J., Andrews, R., Tellam, J. H., Lloyd, J. W., & Lerner, D. N. (1993). Quantification of the water balance and hydrogeological processes in the vicinity of a small groundwater-fed wetland, East Anglia, UK. Journal of Hydrology, 144(1–4), 311–334.

    Article  Google Scholar 

  • Greer, B. M., Burbey, T. J., Zipper, C. E., & Hester, E. T. (2017). Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms. Hydrological Processes, 31, 2244–2260. https://doi.org/10.1002/hyp.11180

    Article  Google Scholar 

  • Griffiths, D. H., & Barker, R. D. (1993). Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics, 29, 211–226.

    Article  Google Scholar 

  • Hansen, A. T., Dolph, C. L., Foufoula-Georgiou, E., & Finlay, J. C. (2018). Contribution of wetlands to nitrate removal at the watershed scale. Nature Geoscience. https://doi.org/10.1038/s41561-017-0056-6

    Article  Google Scholar 

  • Haque, A., Ali, G., & Badiou, P. (2018). Hydrological dynamics of prairie pothole wetlands: Dominant processes and landscape controls under contrasted conditions. Hydrological Processes, 32(15), 2405–2422. https://doi.org/10.1002/hyp.13173

    Article  Google Scholar 

  • Hayashi, M., van der Kamp, G., & Rosenberry, D. O. (2016). Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes. Wetlands, 36, 237–254. https://doi.org/10.1007/s13157-016-0797-9

    Article  Google Scholar 

  • Helene, L. P. I., Moreira, C. A., & Bovi, R. C. (2020). Identification of leachate infiltration and its flow pathway in landfill by means of electrical resistivity tomography (ERT). Environmental Monitoring and Assessment, 192, 249–259. https://doi.org/10.1007/s10661-020-8206-5

    Article  Google Scholar 

  • Hesse, A., Jolivet, A., & Tabbagh, A. (1986). New prospects in shallow depth electrical surveying for archeological and pedological applications. Geophysics, 51, 585–594.

    Article  Google Scholar 

  • Hiscock, K. M. (2005). Hydrogeology principles and practice (p. 405). Blackwell Science Ltd.

    Google Scholar 

  • Hölting, B., & Coldewey, W. G. (2019). Hydrogeology. Springer. https://doi.org/10.1007/978-3-662-56375-5

    Book  Google Scholar 

  • IUCN. (1971). The Ramsar Conference: Final act of the international conference on the conservation of wetlands and waterfowl, Annex 1. Special Supplement to IUCN, Bulletin, 2, 4.

    Google Scholar 

  • Jackson, C. R., Thompson, J. A., & Kolka, R. K. (2014). Wetland soils, hydrology and geomorphology, Chapter 2. In D. Batzer & R. Sharitz (Eds.), Ecology of freshwaterand estuarine wetlands (pp. 23–60). University of California Press.

    Google Scholar 

  • Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., & Elwaseif, M. (2012). Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes. Water Resources Research, 48, W07506. https://doi.org/10.1029/2012WR011893

    Article  Google Scholar 

  • Junk, W. J., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L. D., Bozelli, R. L., Esteves, F. A., Nunes, C. C., Maltchik, L., et al. (2013). Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation Marine and Freshwater Ecosystems, 24, 5–22.

    Article  Google Scholar 

  • Junk, W., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L., & Agostinho, A. (2014). Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation Marine and Freshwater Ecosystems, 24, 5–22.

    Article  Google Scholar 

  • Junqueira, D. A. (2020). Principles of the environmental governance in water resource management focusing on wetlands at Depressão Periférica Paulista. Dissertation, São Paulo State Universtiy.

  • Knödel, K., Lange, G., & Voigt, H.-J. (2007). Environmental geology handbook of field methods and case studies (p. 1374). Springer.

    Google Scholar 

  • Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., & Wealthall, G. P. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). Comptes Rendus Geoscience. https://doi.org/10.1016/j.crte.2009.07.010

    Article  Google Scholar 

  • Leibowitz, S. G. (2015). Geographically isolated wetlands: Why we should keep the term. Wetlands, 35, 997–1003.

    Article  Google Scholar 

  • Leibowitz, S., Wigington, P., Schofield, K., Alexander, L., Vanderhoof, M., & Golden, H. (2018). Connectivity of streams and wetlands to downstream waters: An integrated systems framework. Journal of the American Water Resources Association, Middleburg, VA, 54(2), 298–322.

    Article  Google Scholar 

  • Leite, M. B., Xavier, R. O., Oliveira, P. T., et al. (2018). Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant and Soil, 426, 1–15. https://doi.org/10.1007/s11104-018-3599-4

    Article  Google Scholar 

  • Lghoul, M., Teixidó, T., Peña, J. A., Hakkou, R., Kchikach, A., Guérin, R., Jaffal, M., & Zouhri, L. (2012). Electrical and seismic tomography used to image the structure of a tailings pond at the Abandoned Kettara Mine, Morocco. Mine Water and the Environment, 31, 53–61. https://doi.org/10.1007/s10230-012-0172-x

    Article  Google Scholar 

  • Lile, O. B., Backe, H. R., Elvebakk, H., & Buan, J. E. (1994). Resistivity measurements on the sea bottom to map fractures zones in the bedrock underneath sediments. Geophysical Prospecting, 42, 813–824.

    Article  Google Scholar 

  • Lin, H., Vogel, H. J., Phillips, J., & Fath, B. D. (2015). Complexity of soils and hydrology in ecosystems. Ecological Modelling, 100(298), 1–3. https://doi.org/10.1016/j.ecolmodel.2014.11.016

    Article  Google Scholar 

  • Loke, M. H. (1999). A practical guide to 2D and 3D surveys. Electrical Imaging Surveys for Environmental and Engineering Studies, 2, 8–10.

    Google Scholar 

  • Lowrie, W. (2007). Fundamentals of geophysics (2nd ed., p. 381). Cambridge University Press.

    Book  Google Scholar 

  • Macaskill, C. (2011). The national agricultural directory 2011 (p. 672). Department of Agriculture, Forestry and Fisheries.

    Google Scholar 

  • McCauley, L. A., Anteau, J. M., van der Burg, M. P., & Wiltermuth, M. T. (2015). Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere, 6, 92. https://doi.org/10.1890/ES14-00494.1

    Article  Google Scholar 

  • McLaughlin, D. L., Kaplan, D. A., & Cohen, M. J. (2014). A significant Nexus: Geographically isolated wetlands influence landscape hydrology. Water Resources Research, 50(9), 7153–7166.

    Article  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (1993). Wetland (2nd ed.). Wiley.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (5th ed.). Wiley.

    Google Scholar 

  • Moreira, C. A., Helene, L. P. I., Nogara, P., & Ilha, L. M. (2018). Analysis of leaks from geomembrane in a sanitary landfill through models of electrical resistivity tomography in South Brazil. Environmental Earth Sciences, 77, 7. https://doi.org/10.1007/s12665-017-7180-x

    Article  Google Scholar 

  • Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrangements in the characterization of flow structure in free aquifer. Geofísica Internacional, 55(2), 119–129.

    Google Scholar 

  • Moreira, C. A., Rosolen, V., Furlan, L. M., Bovi, R. C., & Masquelin, H. (2021). Hydraulic conductivity and geophysics (ERT) to assess the aquifer recharge capacity of an inland wetland in the Brazilian Savanna. Environmental Challenges. https://doi.org/10.1016/j.envc.2021.100274

    Article  Google Scholar 

  • Mushet, D. M., Calhoun, A. J. K., Alexander, L. C., Cohen, M. J., DeKeyser, E. S., Fowler, L., Lane, C. R., Lang, M. W., Rains, M. C., & Walls, S. C. W. (2015). Geographically isolated wetlands: Rethinking a misnomer. Wetlands, 35, 423–431.

    Article  Google Scholar 

  • Mussett, A. E., & Khan, M. A. (2000). Looking into the earth: An introduction to geological geophysics. Cambridge University Press.

    Book  Google Scholar 

  • National Research Council-NRC. (1995). Wetlands: characteristics and boundaries (p. 306). National Academy Press.

    Google Scholar 

  • Nyquist, J. E., Peake, J. S., & Roth, M. J. S. (2007). Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain. Geophysics, 72, 139–144.

    Article  Google Scholar 

  • Okpoli, C. (2013). Sensitivity and Resolution Capacity of Electrode Configurations. International Journal of Geophysics. https://doi.org/10.1155/2013/608037

    Article  Google Scholar 

  • Olayinka, A. I., & Yaramanci, U. (2000). Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion. Journal of Applied Geophysics, 45, 63–81. https://doi.org/10.1016/S0926-9851(00)00019-7

    Article  Google Scholar 

  • Petri, S., & Fúlfaro, V. J. (1983). Geologia do Brasil (Fanerozóico) (p. 631). TAQ-EDUSP.

    Google Scholar 

  • Rahman, M. M., Jiang, Y., & Irvine, K. (2018). Assessing wetland services for improved development decision-making: A case study of mangroves in coastal Bangladesh. Wetlands Ecology and Management, 26, 563–580. https://doi.org/10.1007/s11273-018-9592-0

    Article  Google Scholar 

  • Ramsar. (2016). An introduction to the Ramsar convention on wetlands (5th ed.). Ramsar Convention Secretariat.

    Google Scholar 

  • Redhaounia, B., Ilondo, B. O., Gabtni, H., Sami, K., & Bédir, M. (2016). Electrical resistivity tomography (ERT) applied to Karst carbonate aquifers: Case study from Amdoun, Northwestern Tunisia. Pure and Applied Geophysics, 173(4), 1289–1303. https://doi.org/10.1007/s00024-015-1173-z

    Article  Google Scholar 

  • Reynolds, J. M. (1997). An introduction to applied and environmental geophysics (p. 796). Wiley.

    Google Scholar 

  • Richardson, J. L. & Vepraska, M. J. (2000). Wetland soils: Genesis, hydrology, landscapes, and classification, Second Edition, p. 432.

  • Ritz, M., Robain, H., Pervago, E., Albouy, Y., Camerlynck, C., Descloitres, M., & Mariko, A. (1999). Improvement to resistivity pseudosection modelling by removal of near-surface inhomogeneity effects: Application to a soil system in south Cameroon. Geophysical Prospecting, 47, 85–101.

    Article  Google Scholar 

  • Rosa, F. T. G., Moreira, C. A., Carrara, A., & Santos, S. F. (2017). Análise das relações entre resistividade elétrica, condutividade hidráulica e parâmetros físico-químicos para o Aquífero Livre da Região de Corumbataí (SP). Revista Águas Subterrâneas, 31, 4. https://doi.org/10.14295/ras.v31i4.28878

    Article  Google Scholar 

  • Rossi, M. (2017). Mapa Pedológico do Estado de São Paulo: Revisado e ampliado (p. 1118). Instituto Florestal. (inclui mapas).

    Google Scholar 

  • Rover, J., Wright, C. K., Euliss, N. H., Mushet, D. M., & Wylie, B. K. (2011). Classifying the hydrologic function of prairie potholes with remote sensing and GIS. Wetlands, 31(2), 319–327.

    Article  Google Scholar 

  • Sahrawat, K. L. (2003). Organic matter accumulation in submerged soils. Advances in Agronomy, 81, 169–201.

    Article  Google Scholar 

  • Salem, H. A., Gemail, K. S., & Nosair, A. M. (2021). A multidisciplinary approach for delineating wastewater flow paths in shallow groundwater aquifers: A case study in the southeastern part of the Nile Delta, Egypt. Journal of Contaminant Hydrology. https://doi.org/10.1016/j.jconhyd.2020.103701

    Article  Google Scholar 

  • Seaton, W. J., & Burbey, T. J. (2002). Revaluation of two-dimensional resistivity methods in a fractured crystalline-rock terrane. Journal of Applied Geophysics, 51, 21–41.

    Article  Google Scholar 

  • Singh, M., & Sinha, R. (2020). Distribution, diversity, and geomorphic evolution of floodplain wetlands and wetland complexes in the Ganga plains of north Bihar, India. Geomorphology. https://doi.org/10.1016/j.geomorph.2019.106960

    Article  Google Scholar 

  • Tiner, R. W. & Burke, D. G. (1995). Wetlands of Maryland: U.S. Fish and Wildlife Service, Ecological Services, Region 5, Hadley, Massachusetts and Maryland Department of Natural Resources, Baltimore, Maryland, 408.

  • Tiner, R. W. (2003). Estimated extent of geographically isolated wetlands in selected areas of the United States. Wetlands, 23, 636–652.

    Article  Google Scholar 

  • Todhunter, P. E., & Rundquist, B. C. (2004). Terminal lake flooding and wetland expansion in Nelson County, North Dakota. Physical Geography, 25, 68–85.

    Article  Google Scholar 

  • Tomasini, B. A., Vitorino, A. C. T., Garbiate, M. V., de Souza, C. M. A., & Sobrinho, T. A. (2010). Water infiltration in soil cultivated with sugarcane: Under diferent crop** systems and models of adjustment of infiltration equations. Engenharia Agrícola, 30(6), 1060–1070. https://doi.org/10.1590/S0100-69162010000600007

    Article  Google Scholar 

  • Van der Kamp, G., & Hayashi, M. (2009). Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeology Journal, 17, 203–214. https://doi.org/10.1007/s10040-008-0367-1

    Article  Google Scholar 

  • Ward, S. H. (1990). Resistivity, and induced polarization methods. Geotechnical and environmental geophysics (Vol. 1, pp. 147–189). Society Geophysicists.

    Chapter  Google Scholar 

  • Williams, M. R., Buda, A. R., Singha, K., Folmar, G. J., Elliott, H. A., & Schmidt, J. P. (2016). Imaging hydrological processes in headwater Riparian seeps with time-lapse electrical resistivity. Ground Water, 55, 1. https://doi.org/10.1111/gwat.12461

    Article  Google Scholar 

  • Winter, T. C. (1988). A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands. Environmental Management, 12, 605–620.

    Article  Google Scholar 

  • Xavier, R. O., Leite, M. B., Dexter, K., & Matos, D. M. S. (2019). Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia, 190, 471–483. https://doi.org/10.1007/s00442-019-04423-y

    Article  Google Scholar 

  • Zhang, G., Zhang, G. B., Chen, C., Chang, P. Y., Wang, T. P., Yen, H. Y., et al. (2016). Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure and Applied Geophysics, 173(6), 2227–2239. https://doi.org/10.1007/s00024-016-1251-x

    Article  Google Scholar 

  • Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J., & Cuttler, S. (2014). Image-guided inversion of electrical resistivity data. Geophysical Journal International, 197, 292–309. https://doi.org/10.1093/gji/ggu001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq) for financial support.

Funding

Open access funding was provided by the Brazilian National Council for Scientific and Technological Development.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Material preparation, data collection, and analysis were performed by all authors.

Corresponding author

Correspondence to Fernanda Teles Gomes Rosa.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, F.T.G., Moreira, C.A., Rosolen, V. et al. Detection of Aquifer Recharge Zones in Isolated Wetlands: Comparative Analysis Among Electrical Resistivity Tomography Arrays. Pure Appl. Geophys. 179, 1275–1294 (2022). https://doi.org/10.1007/s00024-022-02987-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02987-0

Keywords

Navigation