Log in

Dyadic models for ideal MHD

  • Original Paper
  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study two dyadic models for incompressible ideal magnetohydrodynamics, one with a uni-directional energy cascade and the other one with both forward and backward energy cascades. Global existence of weak solutions and local well-posedness are established for both models. In addition, solutions to the model with uni-directional energy cascade associated with positive initial data are shown to develop blow-up at a finite time. Moreover, a set of fixed points is found for each model. Linear instability about some particular fixed points is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexakis, A., Mininni, P.D., Pouquet, A.: Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72(4), 046301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Antonov, T., Frick, P.: Cascade and scaling in a class of shell models for MHD-turbulence. Math. Model. Syst. Precesses 8, 4–10 (2000)

    Google Scholar 

  3. Antonov, T., Lozhkin, S., Frick, P., Sokoloff, D.: A shell model for free decaying MHD-turbulence and the role of the magnetic Prandtl number. Magnetohydrodynamics 37, 87–92 (2001)

    Article  ADS  Google Scholar 

  4. Barbato, D., Flandoli, F., Morandin, F.: A theorem of uniqueness for an inviscid dyadic model. C.R. Math. Acad. Sci. Paris 348(9–10), 525–528 (2010)

    Article  MathSciNet  Google Scholar 

  5. Barbato, D., Flandoli, F., Morandin, F.: Anomalous dissipation in a stochastic inviscid dyadic model. Ann. Appl. Probab. 21(6), 2424–2446 (2011)

    Article  MathSciNet  Google Scholar 

  6. Barbato, D., Flandoli, F., Morandin, F.: Energy dissipation and self-similar solutions for an unforced inviscid dyadic model. Trans. Am. Math. Soc. 363(4), 1925–1946 (2011)

    Article  MathSciNet  Google Scholar 

  7. Barbato, D., Flandoli, F., Morandin, F.: Uniqueness for a stochastic inviscid dyadic model. Proc. Am. Math. Soc. 138(7), 2607–2617 (2010)

    Article  MathSciNet  Google Scholar 

  8. Barbato, D., Morandin, F.: Positive and non-positive solutions for an inviscid dyadic model: well-posedness and regularity. Nonlinear Differ. Equ. Appl. 20(3), 1105–1123 (2013)

    Article  MathSciNet  Google Scholar 

  9. Basu, A., Sain, A., Dhar, S.K., Pandit, R.: Multiscaling in models of magnetohydrodynamic turbulence. Phys. Rev. Lett. 81, 2687–2690 (1998)

    Article  ADS  Google Scholar 

  10. Biferale, L.: Shell models of energy cascade in turbulence. Annu. Rev. Fluid Mech. 35, 441468 (2003)

    Article  MathSciNet  Google Scholar 

  11. Biskamp, D.: Cascade models for magnetohydrodynamic turbulence. Phys. Rev. E 50, 2702–2711 (1994)

    Article  ADS  Google Scholar 

  12. Caflisch, R.E., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cheskidov, A., Dai, M.: Kolmogorov’s dissipation number and the number of degrees of freedom for the 3D Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 149(2), 429–446 (2019)

    Article  MathSciNet  Google Scholar 

  14. Cheskidov, A., Friedlander, S., Pavlović, N.: Inviscid dyadic model of turbulence: the fixed point and Onsager’s conjecture. J. Math. Phys. 48(6), 065503 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cheskidov, A., Friedlander, S., Pavlović, N.: An inviscid dyadic model of turbulence: the global attractor. Discret. Contin. Dyn. Syst. 26(3), 781–794 (2010)

    Article  MathSciNet  Google Scholar 

  16. Cheskidov, A., Glatt-Holtz, N., Pavlović, N., Shvydkoy, R., Vicol, V.: Susan Friedlander’s contributions in mathematical fluid dynamics. Not. Am. Math. Soc. 68(3), 331–343 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Cheskidov, A., Zaya, K.: Regularizing effect of the forward energy cascade in the inviscid dyadic model. Proc. Am. Math. Soc. 144, 73–85 (2016)

    Article  MathSciNet  Google Scholar 

  18. Constantin, P., Levant, B., Titi, E.: Analytic study of the shell model of turbulence. Physica D 219(2), 120–141 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dai, M.: Blow-up of a dyadic model with intermittency dependence for the Hall MHD. Phys. D Nonlinear Phenom. (2021) (to appear)

  20. Dai, M.: Blow-up of dyadic MHD models with forward energy cascade. ar**v: 2102.03498 (2021)

  21. Dai, M., Friedlander, S.: Uniqueness and non-uniqueness results for dyadic MHD models. ar**v:2107.04073 (2021)

  22. Desnyanskiy, V.N., Novikov, E.A.: Evolution of turbulence spectra toward a similarity regime. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 10, 127–136 (1974)

    Google Scholar 

  23. Dinaburg, E.I., Sinai, Y.G.: A quasi-linear approximation of three-dimensional Navier–Stokes system. Moscow Math. J. 1, 381–388 (2001)

    Article  MathSciNet  Google Scholar 

  24. Frick, P., Stepanov, R., Sokoloff, D.: Large- and small-scale interactions and quenching in an \(\alpha ^2\)-dynamo. Phys. Rev. E 74(6), 066310 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Frik, P.G.: Two-dimensional MHD turbulence: a hierarchical model. Magnetohydrodynamics 20(3), 262–267 (1984)

    MATH  Google Scholar 

  26. Friedlander, S., Glatt-Holtz, N., Vicol, V.: Inviscid limits for a stochastically forced shell model of turbulent flow. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1217–1247 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Friedlander, S., Pavlović, N.: Blowup in a three-dimensional vector model for the Euler equations. Commun. Pure Appl. Math. 57(6), 705–725 (2004)

    Article  MathSciNet  Google Scholar 

  28. Gledzer, E.B.: System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. 18, 216–217 (1973)

    ADS  MATH  Google Scholar 

  29. Gloaguen, C., Léorat, J., Pouquet, A., Grappin, R.: A scalar model for MHD turbulence. Physica D 17(2), 154–182 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Jeong, I., Li, D.: A blow-up result for dyadic models of the Euler equations. Commun. Math. Phys. 337, 1027–1034 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Kang, E., Lee, J.: Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics. Nonlinearity 20(11), 2681–2689 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Katz, N., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans. Am. Math. Soc. 357(2), 695–708 (2005)

    Article  MathSciNet  Google Scholar 

  33. Kiselev, A., Zlatoš, A.: On discrete models of the Euler equation. Int. Math. Res. Not. 38, 2315–2339 (2005)

    Article  MathSciNet  Google Scholar 

  34. Nigro, G., Malara, F., Carbone, V., Veltri, P.: Nanoflares and MHD turbulence in coronal loops: a hybrid shell model. Phys. Rev. Lett. 92(19), 194501 (2004)

    Article  ADS  Google Scholar 

  35. Obukhov, A.M.: Some general properties of equations describing the dynamics of the atmosphere. Izv. Akad. Nauk. SSSR Ser. Fiz. Atmos. Okeana 7, 695–704 (1971)

    Google Scholar 

  36. Ohkitani, K., Yamada, M.: Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model of turbulence. Prog. Theor. Phys. 81, 329–341 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  37. Plunian, F., Stepanov, R., Frick, P.: Shell models of magnetohydrodynamic turbulence. Phys. Rep. 523, 1–60 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  38. Romito, M.: Uniqueness and blow-up for a stochastic viscous dyadic model. Probab. Theor. Relat. Fields 158, 895–924 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of M. Dai is partially supported by NSF Grants DMS-1815069 and DMS-2009422; the work of S. Friedlander is partially supported by NSF Grant DMS-1613135. S. Friedlander is grateful to IAS for its hospitality in 2020-2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimi Dai.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Friedlander, S. Dyadic models for ideal MHD. J. Math. Fluid Mech. 24, 21 (2022). https://doi.org/10.1007/s00021-021-00640-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00640-9

Keywords

Mathematics Subject Classification

Navigation