Log in

Analytical Atmospheric Ekman-Type Solutions with Height-Dependent Eddy Viscosities

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the geophysical fluid dynamics problem in the steady atmospheric Ekman layer for height-dependent eddy viscosities in the form of some quadratic and rational power functions. We use the appropriate boundary conditions to obtain the wind velocity profiles analytically. For these Ekman-type solutions, the angle between the wind vector at the bottom and the geostrophic wind vector can be smaller or bigger than the traditional value of \(\frac{\pi }{4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bressan, A., Constantin, A.: The deflection angle of surface ocean currents from the wind direction. J. Geophys. Res. Oceans 124, 7412–7420 (2019)

    Article  ADS  Google Scholar 

  2. Constantin, A.: Frictional effects in wind-driven ocean currents. Geophys. Astrophys. Fluid Dyn. (2020). https://doi.org/10.1080/03091929.2020.1748614

  3. Constantin, A., Johnson, R.S.: Atmospheric Ekman flows with variable eddy viscosity. Bound. Layer Meteorol. 170, 395–414 (2019)

    Article  ADS  Google Scholar 

  4. Dritschel, D.G., Paldor, N., Constantin, A.: The Ekman spiral for piecewise-uniform viscosity. Ocean Sci. 16, 1089–1093 (2020)

    Article  ADS  Google Scholar 

  5. Gill, A.E.: Atmosphere-Ocean Dynamics: An Introductory Text. Academic Press, New York (1982)

    Google Scholar 

  6. Grisogono, B.: A generalized Ekman layer profile with gradually varying eddy diffusivities. Q. J. R. Meteorol. Soc. 121, 445–453 (1995)

    Article  ADS  Google Scholar 

  7. Grisogono, B.: The angle of the near-surface wind-turning inweakly stable boundary layers. Q. J. R. Meteorol. Soc. 137, 700–708 (2011)

    Article  ADS  Google Scholar 

  8. Holton, J.R.: An Introduction to Dynamic Meteorology. Academic Press, New York (2004)

    Google Scholar 

  9. Kamke, E.: Differentialgleichungen, Lösungsmethoden und Lösungen, vol. I. Akademische Verlagsgesellschaft Geest & Portig K.-G, Leipzig (1967)

    MATH  Google Scholar 

  10. Madsen, O.S.: A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 7, 248–255 (1977)

    Article  ADS  Google Scholar 

  11. Marshall, J., Plumb, R.A.: Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, New York (2016)

    Google Scholar 

  12. Marynets, K.: A Sturm–Liouville problem arising in the atmospheric boundary-layer dynamics. J. Math. Fluid Mech. 22, 41 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Miles, J.: Analytical solutions for the Ekman layer. Bound. Layer Meteorol. 67, 1–10 (1994)

    Article  ADS  Google Scholar 

  14. Vallis, G.K.: Atmosphere and Ocean Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  15. Yoshikawa, Y., Masuda, A.: Seasonal variations in the speed factor and deflection angle of the wind-driven surface flow in the Tsushima Strait. J. Geophys. Res. 114, C12022 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Ionescu-Kruse.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionescu-Kruse, D. Analytical Atmospheric Ekman-Type Solutions with Height-Dependent Eddy Viscosities. J. Math. Fluid Mech. 23, 18 (2021). https://doi.org/10.1007/s00021-020-00543-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00543-1

Navigation