Log in

Nonlinear Bang–Bang Eigenproblems and Optimization of Resonances in Layered Cavities

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study optimization of quasi-normal-eigenvalues \(\omega \) associated with the equation \(y^{\prime \prime } = -\omega ^2 B y \) of two-side open optical and mechanical resonators. The coefficient B(x) is assumed to satisfy the side constraints \(b_1(x) \le B(x) \le b_2 (x)\) and is subjected to modifications with the aim to move a particular quasi-(normal-)eigenvalue closer to the real line. The existence of various optimizers is rigorously proved including the existence of local minimizers for the decay rate in the case of low contrast. We show that locally extremal quasi-eigenvalues belong to the spectrum \(\Sigma ^\mathrm {nl}\) of the bang-bang eigenproblem \(y^{\prime \prime } = - \omega ^2 y [ b_1 + (b_2 - b_1) \chi _{_{\scriptstyle \mathbb C_+}}(y^2 ) ]\) (here \(\chi _{_{\scriptstyle \mathbb C_+}}(\cdot )\) is the indicator function of the upper complex half-plane \(\mathbb C_+\)). To achieve this a variational characterization of \(\Sigma ^\mathrm {nl}\) is obtained in terms of quasi-eigenvalue perturbations. To address the minimization of the decay rate \(| {{\mathrm{Im}}}\omega |\) for a fixed frequency \({{\mathrm{Re}}}\omega \), we develop and rigorously justify a new numerical method based on the above nonlinear equation. This approach excludes an infinite-dimensional unknown \(B (\cdot )\) from the optimization process. In a numerical experiment, we compute some of quasi-eigenvalues of minimal decay and compare one of associated structures with recently introduced designs of high quality-factor cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Høegh-Krohn, R.: Perturbation of resonances in quantum mechanics. J. Math. Anal. Appl. 101, 491–513 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Karabash, I.M.: Resonance Free Regions and Non-Hermitian Spectral Optimization for Schrödinger Point Interactions (submitted)

  3. Burger, S., Pomplun, J., Schmidt, F., Zschiedrich, L.: Finite-element method simulations of high-Q nanocavities with 1D photonic bandgap. In: Proceedings of the SPIE, Vol. 7933, p. 79330T (Physics and Simulation of Optoelectronic Devices XIX) (2011)

  4. Burke, J.V., Lewis, A.S., Overton, M.L.: Optimal stability and eigenvalue multiplicity. Found. Comput. Math. 1(2), 205–225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox, S.J., Overton, M.L.: Perturbing the critically damped wave equation. SIAM J. Appl. Math. 56(5), 1353–1362 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19(1–2), 213–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, S., Zuazua, E.: The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44(2), 545–573 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)

    MATH  Google Scholar 

  9. Dobson, D.C., Santosa, F., Shipman, S.P., Weinstein, M.I.: Resonances of a potential well with a thick barrier. SIAM J. Appl. Math. 73(4), 1489–1512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Egorov, Y.V., Kondrat’ev, V.A.: Estimates for the first eigenvalue in some Sturm–Liouville problems. Russ. Math. Surv. 51(3), 439–508 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Froese, R.: Asymptotic distribution of resonances in one dimension. J. Differ. Equ. 137(2), 251–272 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, Y., Cheng, X.: A numerical approach for defect modes localization in an inhomogeneous medium. SIAM J. Appl. Math. 73(6), 2188–2202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gubreev, G.M., Pivovarchik, V.N.: Spectral analysis of the Regge problem with parameters. Funct. Anal. Appl. 31(1), 54–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harrell, E.M.: General lower bounds for resonances in one dimension. Commun. Math. Phys. 86(2), 221–225 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harrell, E.M., Svirsky, R.: Potentials producing maximally sharp resonances. Trans. Am. Math. Soc. 293(2), 723–736 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heider, P., Berebichez, D., Kohn, R.V., Weinstein, M.I.: Optimization of scattering resonances. Struct. Multidiscip. Optim. 36, 443–456 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  18. Kao, C.-Y., Santosa, F.: Maximization of the quality factor of an optical resonator. Wave Motion 45, 412–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karabash, I.M.: Optimization of quasi-normal eigenvalues for Krein–Nudelman strings. Integral Equ. Oper. Theory 75(2), 235–247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karabash, I.M.: Optimization of quasi-normal eigenvalues for 1-D wave equations in inhomogeneous media; description of optimal structures. Asymptot. Anal. 81(3–4), 273–295 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Karabash, I.M.: Nonlinear eigenvalue problem for optimal resonances in optical cavities. Math. Model. Nat. Phenom. 8(1), 143–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karabash, I.M.: Pareto optimal structures producing resonances of minimal decay under \(L^1\)-type constraints. J. Differ. Equ. 257(2), 374–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krein, M.G., Nudelman, A.A.: Some spectral properties of a nonhomogeneous string with a dissipative boundary condition. J. Oper. Theory 22, 369–395 (1989) (Russian)

  24. Kuramochi, E., Taniyama, H., Tanabe, T., Kawasaki, K., Roh, Y.G., Notomi, M.: Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on \({\rm SiO}_2\) claddings and on air claddings. Opt. Express 18(15), 15859–15869 (2010)

    Article  Google Scholar 

  25. Lax, P.D., Phillips, R.S.: A logarithmic bound on the location of the poles of the scattering matrix. Arch. Ration. Mech. Anal. 40(4), 268–280 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, X., Johnson, S.G.: Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. Opt. Express 21(25), 30812–30841 (2013)

    Article  Google Scholar 

  27. Maassen van den Brink, A., Young, K.: Jordan blocks and generalized bi-orthogonal bases: realizations in open wave systems. J. Phys. A 34(12), 2607–2624 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maes, B., Petráček, J., Burger, S., Kwiecien, P., Luksch, J., Richter, I.: Simulations of high-Q optical nanocavities with a gradual 1D bandgap. Opt. Express 21(6), 6794–6806 (2013)

    Article  Google Scholar 

  29. Maksimovic, M., Hammer, M., van Groesen, E.: Field representation for optical defect resonances in multilayer microcavities using quasi-normal modes. Opt. Commun. 281(6), 1401–1411 (2008)

    Article  Google Scholar 

  30. Notomi, M., Kuramochi, E., Taniyama, H.: Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 16(15), 11095–11102 (2008)

    Article  Google Scholar 

  31. Osting, B., Weinstein, M.I.: Long-lived scattering resonances and Bragg structures. SIAM J. Appl. Math. 73(2), 827–852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pfeiffer, F., Mennicke, U., Salditt, T.: Waveguide-enhanced scattering from thin biomolecular films. J. Appl. Crystallogr. 35(2), 163–167 (2002)

    Article  Google Scholar 

  33. Pivovarchik, V.N.: Inverse problem for a smooth string with dam** at one end. J. Oper. Theory 38(2), 243–263 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Pivovarchik, V., van der Mee, C.: The inverse generalized Regge problem. Inverse Probl. 17(6), 1831–1845 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, New York (1987)

    MATH  Google Scholar 

  36. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  37. Schenk, F.: Optimization of Resonances for Multilayer X-ray Resonators. Universitätsverlag Göttingen, Göttingen (2011)

    Google Scholar 

  38. Settimi, A., Severini, S., Hoenders, B.J.: Quasi-normal-modes description of transmission properties for photonic bandgap structures. J. Opt. Soc. Am. B 26, 876–891 (2009)

    Article  Google Scholar 

  39. Shubov, M.A.: Spectral operators generated by damped hyperbolic equations. Integral Equ. Oper. Theory 28(3), 358–372 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illya M. Karabash.

Additional information

During various parts of this research, IK and IV were supported by the EU-financed projects AMMODIT (Grant Agreement MSCA-RISE-2014-645672-AMMODIT) and EUMLS (Marie Curie Actions—International Research Staff Exchange Scheme FP7-People-2011-IRSES, Project Number 295164), IK was supported by the Alexander von Humboldt Foundation, by Hausdorff Trimester Program “Mathematics of Signal Processing” at Hausdorff Research Institute for Mathematics, and by the Project No. 15-1vv\19 of Donetsk National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabash, I.M., Logachova, O.M. & Verbytskyi, I.V. Nonlinear Bang–Bang Eigenproblems and Optimization of Resonances in Layered Cavities. Integr. Equ. Oper. Theory 88, 15–44 (2017). https://doi.org/10.1007/s00020-017-2368-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2368-8

Mathematics Subject Classification

Keywords

Navigation