Log in

AAV-Net1 facilitates the trans-differentiation of supporting cells into hair cells in the murine cochlea

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mechanosensitive hair cells (HCs) in the cochlear sensory epithelium are critical for sound detection and transduction. Mammalian HCs in the cochlea undergo cytogenesis during embryonic development, and irreversible damage to hair cells postnatally is a major cause of deafness. During the development of the organ of Corti, HCs and supporting cells (SCs) originate from the same precursors. In the neonatal cochlea, damage to HCs activates adjacent SCs to act as HC precursors and to differentiate into new HCs. However, the plasticity of SCs to produce new HCs is gradually lost with cochlear development. Here, we delineate an essential role for the guanine nucleotide exchange factor Net1 in SC trans-differentiation into HCs. Net1 overexpression mediated by AAV-ie in SCs promoted cochlear organoid formation and HC differentiation under two and three-dimensional culture conditions. Also, AAV-Net1 enhanced SC proliferation in Lgr5-EGFPCreERT2 mice and HC generation as indicated by lineage tracing of HCs in the cochleae of Lgr5-EGFPCreERT2/Rosa26-tdTomatoloxp/loxp mice. We further found that the up-regulation of Wnt/β-catenin and Notch signaling in AAV-Net1-transduced cochleae might be responsible for the SC proliferation and HC differentiation. Also, Net1 overexpression in SCs enhanced SC proliferation and HC regeneration and survival after HC damage by neomycin. Taken together, our study suggests that Net1 might serve as a potential target for HC regeneration and that AAV-mediated gene regulation may be a promising approach in stem cell-based therapy in hearing restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and materials availability

All data associated with this study are present in the paper or the Supplementary Materials.

References

  1. Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7(11):837–849

    Article  CAS  PubMed  Google Scholar 

  2. Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18(19):7811–7821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Driver EC, Sillers L, Coate TM et al (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376(1):86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. White PM, Doetzlhofer A, Lee YS et al (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441(7096):984–987

    Article  CAS  PubMed  Google Scholar 

  5. Chai R, Kuo B, Wang T et al (2012) Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA 109(21):8167–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinkkonen ST, Chai R, Jan TA et al (2011) Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 1:26

    Article  PubMed  PubMed Central  Google Scholar 

  7. Atkinson PJ, Dong Y, Gu S et al (2018) Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. J Clin Invest 128(4):1641–1656

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng C, Guo L, Lu L et al (2017) Characterization of the transcriptomes of Lgr5+ hair cell progenitors and Lgr5– supporting cells in the mouse cochlea. Front Mol Neurosci 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Guo L, Lu X et al (2018) Characterization of Lgr6+ cells as an enriched population of hair cell progenitors compared to Lgr5+ cells for hair cell generation in the neonatal mouse cochlea. Front Mol Neurosci 11:147

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cox BC, Chai R, Lenoir A et al (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141(4):816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang T, Chai R, Kim GS et al (2015) Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 6:6613

    Article  CAS  PubMed  Google Scholar 

  12. Zhang S, Zhang Y, Yu P et al (2017) Characterization of Lgr5+ progenitor cell transcriptomes after neomycin injury in the neonatal mouse cochlea. Front Mol Neurosci 10:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bramhall NF, Shi F, Arnold K et al (2014) Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2(3):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schimmang T (2007) Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51(6–7):473–481

    Article  CAS  PubMed  Google Scholar 

  15. Groves AK, Fekete DM (2012) Sha** sound in space: the regulation of inner ear patterning. Development 139(2):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jansson L, Kim GS, Cheng AG (2015) Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 9:66

    Article  PubMed  PubMed Central  Google Scholar 

  17. Żak M, Klis SF, Grolman W (2015) The Wnt and Notch signalling pathways in the develo** cochlea: formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 47(Pt B):247–258

    Article  PubMed  Google Scholar 

  18. Costa A, Powell LM, Lowell S et al (2017) Atoh1 in sensory hair cell development: constraints and cofactors. Semin Cell Dev Biol 65:60–68

    Article  CAS  PubMed  Google Scholar 

  19. Walters BJ, Coak E, Dearman J et al (2017) In vivo interplay between p27(Kip1), GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice. Cell Rep 19(2):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuo BR, Baldwin EM, Layman WS et al (2015) In vivo cochlear hair cell generation and survival by coactivation of β-Catenin and Atoh1. J Neurosci 35(30):10786–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi F, Hu L, Edge AS (2013) Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 110(34):13851–13856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ni W, Zeng S, Li W et al (2016) Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 7(41):66754–66768

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li W, Wu J, Yang J et al (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci USA 112(1):166–171

    Article  CAS  PubMed  Google Scholar 

  24. Wu J, Li W, Lin C et al (2016) Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 6:29418

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chan AM, Takai S, Yamada K et al (1996) Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene 12(6):1259–1266

    CAS  PubMed  Google Scholar 

  26. Murray D, Horgan G, Macmathuna P et al (2008) NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer 99(8):1322–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366(6456):643–654

    Article  CAS  PubMed  Google Scholar 

  29. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

    Article  CAS  PubMed  Google Scholar 

  30. Zong W, Feng W, Jiang Y et al (2020) LncRNA CTC-497E21.4 promotes the progression of gastric cancer via modulating miR-22/NET1 axis through RhoA signaling pathway. Gastric Cancer 23(2):228–240

    Article  CAS  PubMed  Google Scholar 

  31. Leyden J, Murray D, Moss A et al (2006) Net1 and Myeov: computationally identified mediators of gastric cancer. Br J Cancer 94(8):1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schneider EH, Hofmeister O, Kälble S et al (2020) Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in HuT-78 T lymphoma cells. Naunyn Schmiedebergs Arch Pharmacol 393(7):1251–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, **a P, Zhang W et al (2017) Short interfering RNA targeting Net1 reduces the angiogenesis and tumor growth of in vivo cervical squamous cell carcinoma through VEGF down-regulation. Hum Pathol 65:113–122

    Article  CAS  PubMed  Google Scholar 

  34. Miyakoshi A, Ueno N, Kinoshita N (2004) Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 72(1):48–55

    Article  CAS  PubMed  Google Scholar 

  35. Wei S, Dai M, Liu Z et al (2017) The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation. Cell Res 27(2):202–225

    Article  CAS  PubMed  Google Scholar 

  36. Tan F, Chu C, Qi J et al (2019) AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 10(1):3733

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li XJ, Doetzlhofer A (2020) LIN28B/let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling. Proc Natl Acad Sci USA 117(36):22225–22236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Gu Y, Li Y et al (2021) Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Rep 35(3):109016

    Article  CAS  PubMed  Google Scholar 

  39. Jacques BE, Puligilla C, Weichert RM et al (2012) A dual function for canonical Wnt/β-catenin signaling in the develo** mammalian cochlea. Development 139(23):4395–4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shi F, Hu L, Jacques BE et al (2014) β-Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 34(19):6470–6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chai R, ** and mature mouse cochlea. J Assoc Res Otolaryngol 12(4):455–469

    Article  PubMed  PubMed Central  Google Scholar 

  42. Veeraraghavalu K, Pett M, Kumar RV et al (2004) Papillomavirus-mediated neoplastic progression is associated with reciprocal changes in JAGGED1 and manic fringe expression linked to notch activation. J Virol 78(16):8687–8700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Golson ML, Le Lay J, Gao N et al (2009) Jagged1 is a competitive inhibitor of Notch signaling in the embryonic pancreas. Mech Dev 126(8–9):687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basch ML, Brown 2nd RM, Jen HI et al (2016) Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates. Elife 5

  45. Oesterle EC, Chien WM, Campbell S et al (2011) p27(Kip1) is required to maintain proliferative quiescence in the adult cochlea and pituitary. Cell Cycle 10(8):1237–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the develo** organ of Corti. Development 126(8):1581–1590

    Article  CAS  PubMed  Google Scholar 

  47. Löwenheim H, Furness DN, Kil J et al (1999) Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci USA 96(7):4084–4088

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shen TC, Albenberg L, Bittinger K et al (2015) Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 125(7):2841–2850

    Article  PubMed  PubMed Central  Google Scholar 

  49. Goldmann T, Overlack N, Möller F et al (2012) A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol Med 4(11):1186–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huth ME, Han KH, Sotoudeh K et al (2015) Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Invest 125(2):583–592

    Article  PubMed  PubMed Central  Google Scholar 

  51. Landegger LD, Pan B, Askew C et al (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35(3):280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFA1101300, 2020YFA0113600, 2021YFA1101800 and 2020YFA0112503), the Strategic Priority Research Program of the Chinese Academy of Science (XDA16010303), the National Natural Science Foundation of China (82000984 , 92149304, 82030029 and 81970882), the China National Postdoctoral Program for Innovative Talents (BX20200082), the China Postdoctoral Science Foundation (2020M681468), the Science and Technology Department of Sichuan Province (2021YFS0371), the Shenzhen Fundamental Research Program (JCYJ20190814093401920 and JCYJ20210324125608022), and the Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (SKLGE-2104).

Author information

Authors and Affiliations

Authors

Contributions

JQ and RC conceived and designed the experiments. LZ, YF, and FT performed most of the experiments. LZ contributed to the data analysis. FG completed the ABR test and data analyses of RNA sequencing. ZZ, NL, and QS helped with the experiments and the data analysis. JQ, LZ, YF, and FT discussed the data analysis, interpretation, and presentation and wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Jieyu Qi or Renjie Chai.

Ethics declarations

Conflict of interest

Jieyu Qi had filed a patent on the use of AAV-ie for gene therapy in the inner ear. The authors declare no other competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3943 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Fang, Y., Tan, F. et al. AAV-Net1 facilitates the trans-differentiation of supporting cells into hair cells in the murine cochlea. Cell. Mol. Life Sci. 80, 86 (2023). https://doi.org/10.1007/s00018-023-04743-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04743-6

Keywords

Navigation