Log in

Dusp26 phosphatase regulates mitochondrial respiration and oxidative stress and protects neuronal cell death

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH2-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death. In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson’s Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Upon publication, materials are available upon request.

References

  1. Mustelin T, Vang T, Bottini N (2005) Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5:43–57. https://doi.org/10.1038/nri1530

    Article  CAS  PubMed  Google Scholar 

  2. Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    Article  CAS  Google Scholar 

  3. Thompson EM, Stoker AW (2021) A review of DUSP26: structure, regulation and relevance in human disease. Int J Mol Sci. https://doi.org/10.3390/ijms22020776

    Article  PubMed  PubMed Central  Google Scholar 

  4. Caunt CJ, Keyse SM (2013) Dual-specificity MAP kinase phosphatases (MKPs): sha** the outcome of MAP kinase signalling. FEBS J 280:489–504. https://doi.org/10.1111/j.1742-4658.2012.08716.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pavic K, Duan G, Kohn M (2015) VHR/DUSP3 phosphatase: structure, function and regulation. FEBS J 282:1871–1890. https://doi.org/10.1111/febs.13263

    Article  CAS  PubMed  Google Scholar 

  6. Russo LC, Farias JO, Ferruzo PYM, Monteiro LF, Forti FL (2018) Revisiting the roles of VHR/DUSP3 phosphatase in human diseases. Clinics (Sao Paulo) 73:e466s. https://doi.org/10.6061/clinics/2018/e466s

    Article  Google Scholar 

  7. Hu Y, Mivechi NF (2006) Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Mol Cell Biol 26:3282–3294. https://doi.org/10.1128/MCB.26.8.3282-3294.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasudevan SA, Nuchtern JG, Shohet JM (2005) Gene profiling of high risk neuroblastoma. World J Surg 29:317–324. https://doi.org/10.1007/s00268-004-7820-7

    Article  PubMed  Google Scholar 

  9. Yu W et al (2007) A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. Oncogene 26:1178–1187. https://doi.org/10.1038/sj.onc.1209899

    Article  CAS  PubMed  Google Scholar 

  10. Kim H et al (2014) The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 5:3351. https://doi.org/10.1038/ncomms4351

    Article  CAS  PubMed  Google Scholar 

  11. Shi Y et al (2015) NSC-87877 inhibits DUSP26 function in neuroblastoma resulting in p53-mediated apoptosis. Cell Death Dis 6:e1841. https://doi.org/10.1038/cddis.2015.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shang X et al (2010) Dual-specificity phosphatase 26 is a novel p53 phosphatase and inhibits p53 tumor suppressor functions in human neuroblastoma. Oncogene 29:4938–4946. https://doi.org/10.1038/onc.2010.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jung S et al (2016) Dual-specificity phosphatase 26 (DUSP26) stimulates Abeta42 generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem 137:770–781. https://doi.org/10.1111/jnc.13597

    Article  CAS  PubMed  Google Scholar 

  14. Wang JY, Lin CH, Yang CH, Tan TH, Chen YR (2006) Biochemical and biological characterization of a neuroendocrine-associated phosphatase. J Neurochem 98:89–101. https://doi.org/10.1111/j.1471-4159.2006.03852.x

    Article  CAS  PubMed  Google Scholar 

  15. Tanuma N et al (2009) Protein phosphatase Dusp26 associates with KIF3 motor and promotes N-cadherin-mediated cell-cell adhesion. Oncogene 28:752–761. https://doi.org/10.1038/onc.2008.431

    Article  CAS  PubMed  Google Scholar 

  16. Huang F, Sheng X-X, Zhang H-J (2019) DUSP26 regulates podocyte oxidative stress and fibrosis in a mouse model with diabetic nephropathy through the mediation of ROS. BBRC 515:410–416

    CAS  PubMed  Google Scholar 

  17. Armes JE et al (2004) Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 23:5697–5702. https://doi.org/10.1038/sj.onc.1207740

    Article  CAS  PubMed  Google Scholar 

  18. Pribill I et al (2001) High frequency of allelic imbalance at regions of chromosome arm 8p in ovarian carcinoma. Cancer Genet Cytogenet 129:23–29

    Article  CAS  Google Scholar 

  19. Lucero M, Suarez AE, Chambers JW (2019) Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 25:837–858. https://doi.org/10.1111/cns.13141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rardin MJ, Wiley SE, Murphy AN, Pagliarini DJ, Dixon JE (2008) Dual specificity phosphatases 18 and 21 target to opposing sides of the mitochondrial inner membrane. J Biol Chem 283:15440–15450. https://doi.org/10.1074/jbc.M709547200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giorgianni F, Koirala D, Weber KT, Beranova-Giorgianni S (2014) Proteome analysis of subsarcolemmal cardiomyocyte mitochondria: a comparison of different analytical platforms. Int J Mol Sci 15:9285–9301. https://doi.org/10.3390/ijms15069285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kruse R, Hojlund K (2017) Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion 33:45–57. https://doi.org/10.1016/j.mito.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Padrao AI, Vitorino R, Duarte JA, Ferreira R, Amado F (2013) Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J Proteome Res 12:4257–4267. https://doi.org/10.1021/pr4003917

    Article  CAS  PubMed  Google Scholar 

  24. Triplett JC et al (2015) Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson’s disease. J Neurochem 133:750–765. https://doi.org/10.1111/jnc.13039

    Article  CAS  PubMed  Google Scholar 

  25. Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34. https://doi.org/10.1016/j.tibs.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90:675–691. https://doi.org/10.1016/j.neuron.2016.03.038

    Article  CAS  PubMed  Google Scholar 

  27. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8):1583. https://doi.org/10.3390/molecules24081583

    Article  CAS  PubMed Central  Google Scholar 

  28. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340. https://doi.org/10.5607/en.2015.24.4.325

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569. https://doi.org/10.1016/j.cell.2015.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eroglu B, Moskophidis D, Mivechi NF (2010) Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta. Mol Cell Biol 30:4626–4643. https://doi.org/10.1128/MCB.01493-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dimauro I, Pearson T, Caporossi D, Jackson MJ (2012) A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes 5:513. https://doi.org/10.1186/1756-0500-5-513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chatterjee A et al (2016) MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 167:722-738 e723. https://doi.org/10.1016/j.cell.2016.09.052

    Article  CAS  PubMed  Google Scholar 

  33. Thomas B, von Coelln R, Mandir AS, Trinkaus DB, Farah MH, Lim KL, Calingasan NY, Bea MF, Dawson VL, Dawson TM (2007) MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity. Neurobiol Dis 26:312–322

    Article  CAS  Google Scholar 

  34. Neumann S, Chassefeyre R, Campbell GE, Encalada SE (2017) KymoAnalyzer: a software tool for the quantitative analysis of intracellular transport in neurons. Traffic 18:71–88. https://doi.org/10.1111/tra.12456

    Article  CAS  PubMed  Google Scholar 

  35. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7:1235–1246. https://doi.org/10.1038/nprot.2012.058

    Article  CAS  PubMed  Google Scholar 

  36. Jha P, Wang X, Auwerx J (2016) Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr Protoc Mouse Biol 6:1–14. https://doi.org/10.1002/9780470942390.mo150182

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sotnikova TD et al (2005) Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease. PLoS Biol 3:e271. https://doi.org/10.1371/journal.pbio.0030271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Zheng Y, Nishina PM, Naggert JK (2009) A new mouse model of metabolic syndrome and associated complications. J Endocrinol 202:17–28

    Article  CAS  Google Scholar 

  39. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  CAS  Google Scholar 

  40. Deas E, Plun-Favreau H, Wood NW (2009) PINK1 function in health and disease. EMBO Mol Med 1:152–165. https://doi.org/10.1002/emmm.200900024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou C et al (2008) The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci USA 105:12022–12027. https://doi.org/10.1073/pnas.0802814105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sacco F et al (2014) Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways. Front Genet 5:115. https://doi.org/10.3389/fgene.2014.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen HH, Luche R, Wei B, Tonks NK (2004) Characterization of two distinct dual specificity phosphatases encoded in alternative open reading frames of a single gene located on human chromosome 10q22.2. J Biol Chem 279:41404–41413. https://doi.org/10.1074/jbc.M405286200

    Article  CAS  PubMed  Google Scholar 

  44. Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473. https://doi.org/10.1161/01.RES.0000258450.44413.96

    Article  CAS  PubMed  Google Scholar 

  45. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  46. Jenner P et al (2013) Parkinson’s disease—the debate on the clinical phenomenology, aetiology, pathology and pathogenesis. J Parkinsons Dis 3:1–11. https://doi.org/10.3233/JPD-130175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang FL et al (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12:1631–1643. https://doi.org/10.1016/j.celrep.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71. https://doi.org/10.1016/j.tcb.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  49. Plun-Favreau H et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252. https://doi.org/10.1038/ncb1644

    Article  CAS  PubMed  Google Scholar 

  50. Alnemri ES (2007) HtrA2 and Parkinson’s disease: think PINK? Nat Cell Biol 9:1227–1229. https://doi.org/10.1038/ncb1107-1227

    Article  CAS  PubMed  Google Scholar 

  51. Hegde R et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438. https://doi.org/10.1074/jbc.M109721200

    Article  CAS  PubMed  Google Scholar 

  52. Kieper N et al (2010) Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Exp Cell Res 316:1213–1224. https://doi.org/10.1016/j.yexcr.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verhagen AM et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454. https://doi.org/10.1074/jbc.M109891200

    Article  CAS  PubMed  Google Scholar 

  54. Vande Walle L, Lamkanfi M, Vandenabeele P (2008) The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15:453–460. https://doi.org/10.1038/sj.cdd.4402291

    Article  CAS  PubMed  Google Scholar 

  55. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670. https://doi.org/10.1083/jcb.201401070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang X et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906. https://doi.org/10.1016/j.cell.2011.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsieh CH et al (2016) Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724. https://doi.org/10.1016/j.stem.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Son Y et al (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011:792639. https://doi.org/10.1155/2011/792639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong H et al (2018) Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci 11:165. https://doi.org/10.3389/fnmol.2018.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang G et al (2014) Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75:79–88. https://doi.org/10.1016/j.neuint.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Gallo KA, Johnson GL (2002) Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3:663–672. https://doi.org/10.1038/nrm906

    Article  CAS  PubMed  Google Scholar 

  62. Kim EK, Choi EJ (1802) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010:396–405. https://doi.org/10.1016/j.bbadis.2009.12.009

    Article  CAS  Google Scholar 

  63. Choi WS et al (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279:20451–20460. https://doi.org/10.1074/jbc.M311164200

    Article  CAS  PubMed  Google Scholar 

  64. Correa SA, Eales KL (2012) The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012:649079. https://doi.org/10.1155/2012/649079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang G, Pan J, Chen SD (2012) Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson’s disease. Prog Neurobiol 98:207–221. https://doi.org/10.1016/j.pneurobio.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  66. Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P (2015) p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 4:67–86

    PubMed  PubMed Central  Google Scholar 

  67. Karunakaran S et al (2008) Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. J Neurosci 28:12500–12509. https://doi.org/10.1523/JNEUROSCI.4511-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gomez-Lazaro M et al (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104:1599–1612. https://doi.org/10.1111/j.1471-4159.2007.05115.x

    Article  CAS  PubMed  Google Scholar 

  69. Vasudevan SA et al (2005) MKP-8, a novel MAPK phosphatase that inhibits p38 kinase. Biochem Biophys Res Commun 330:511–518. https://doi.org/10.1016/j.bbrc.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  70. Gloeckner CJ, Schumacher A, Boldt K, Ueffing M (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109:959–968. https://doi.org/10.1111/j.1471-4159.2009.06024.x

    Article  CAS  PubMed  Google Scholar 

  71. Hsu CH et al (2010) MKK6 binds and regulates expression of Parkinson’s disease-related protein LRRK2. J Neurochem 112:1593–1604. https://doi.org/10.1111/j.1471-4159.2010.06568.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hotamisligil GS, Davis RJ (2016) Cell signaling and stress responses. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006072

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liou AK, Leak RK, Li L, Zigmond MJ (2008) Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol Dis 32:116–124. https://doi.org/10.1016/j.nbd.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cookson MR (2015) LRRK2 pathways leading to neurodegeneration. Curr Neurol Neurosci Rep 15:42. https://doi.org/10.1007/s11910-015-0564-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wallings R, Manzoni C, Bandopadhyay R (2015) Cellular processes associated with LRRK2 function and dysfunction. FEBS J 282:2806–2826. https://doi.org/10.1111/febs.13305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Debattisti V, Gerencser AA, Saotome M, Das S, Hajnoczky G (2017) ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep 21:1667–1680. https://doi.org/10.1016/j.celrep.2017.10.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morfini GA et al (2013) Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 8:e65235. https://doi.org/10.1371/journal.pone.0065235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tanaka K, Sugiura Y, Ichishita R, Mihara K, Oka T (2011) KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J Cell Sci 124:2457–2465. https://doi.org/10.1242/jcs.086470

    Article  CAS  PubMed  Google Scholar 

  79. Nangaku M et al (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209–1220

    Article  CAS  Google Scholar 

  80. Chambers JW, Cherry L, Laughlin JD, Figuera-Losada M, Lograsso PV (2011) Selective inhibition of mitochondrial JNK signaling achieved using peptide mimicry of the Sab kinase interacting motif-1 (KIM1). ACS Chem Biol 6:808–818. https://doi.org/10.1021/cb200062a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wiltshire C, Matsushita M, Tsukada S, Gillespie DA, May GH (2002) A new c-Jun N-terminal kinase (JNK)-interacting protein, Sab (SH3BP5), associates with mitochondria. Biochem J 367:577–585. https://doi.org/10.1042/BJ20020553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Putcha GV et al (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914. https://doi.org/10.1016/s0896-6273(03)00355-6

    Article  CAS  PubMed  Google Scholar 

  83. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251. https://doi.org/10.1038/onc.2008.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212. https://doi.org/10.1074/jbc.275.21.16202

    Article  CAS  PubMed  Google Scholar 

  85. Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105:1048–1056. https://doi.org/10.1111/j.1471-4159.2008.05217.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaki GS, Papavassiliou AG (2014) Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. NeuroMol Med 16:217–230. https://doi.org/10.1007/s12017-014-8294-x

    Article  CAS  Google Scholar 

  87. Tieu K, Ischiropoulos H, Przedborski S (2003) Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 55:329–335. https://doi.org/10.1080/1521654032000114320

    Article  CAS  PubMed  Google Scholar 

  88. Yang S, Lian G (2020) ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem 467:1–12. https://doi.org/10.1007/s11010-019-03667-9

    Article  CAS  PubMed  Google Scholar 

  89. Mathiasen JR et al (2004) Inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells. Brain Res 1003:86–97. https://doi.org/10.1016/j.brainres.2003.11.073

    Article  CAS  PubMed  Google Scholar 

  90. Pajares M, Rojo AI, Manda G, Boscá L, Cuadrado A (2020) Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9:1687. https://doi.org/10.3390/cells9071687

    Article  CAS  PubMed Central  Google Scholar 

  91. Chen J et al (2018) Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T alpha-synuclein model of Parkinson’s disease. Cell Death Dis 9:700. https://doi.org/10.1038/s41419-018-0722-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Culbert AA et al (2006) MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 281:23658–23667. https://doi.org/10.1074/jbc.M513646200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Erin Eroglu for technical assistance. We also thank Drs. B. Lokeshwar and A. Terry and S. Naughton for providing valuable materials.

Funding

Research was supported by grants from NIHCA062130 and NIHCA132640 and in part by VA Merit Award 1I01BX000161 (NFM).

Author information

Authors and Affiliations

Authors

Contributions

BE performed experiments and analyzed data. XJ generated the mouse model and performed experiments and analyzed data and wrote the manuscript. SD, BO performed initial experiments. OAR analyzed data, DM and NFM, discuss results, designed experiments and wrote the manuscript.

Corresponding authors

Correspondence to Demetrius Moskophidis or Nahid F. Mivechi.

Ethics declarations

Conflict of interest

Authors declare no financial or non-financial interest.

Ethical approval

All experiments involving mice were approved by Augusta University Institutional Animal Care and Use Committee (IACUC) in compliance with National Institutes of Health (NIH) guidelines.

Human subject

Tissue specimens were generously provided by the NIH NeuroBank and Brain Tissue Repository. The materials were deidentified bio-specimens.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroglu, B., **, X., Deane, S. et al. Dusp26 phosphatase regulates mitochondrial respiration and oxidative stress and protects neuronal cell death. Cell. Mol. Life Sci. 79, 198 (2022). https://doi.org/10.1007/s00018-022-04162-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04162-z

Keywords

Navigation