Log in

Reciprocal regulations between miRNAs and HIF-1α in human cancers

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hypoxia inducible factor-1α (HIF-1α) is a central molecule involved in mediating cellular processes. Alterations of HIF-1α and hypoxically regulated microRNAs (miRNAs) are correlated with patients’ outcome in various cancers, indicating their crucial roles on cancer development. Recently, an increasing number of studies have revealed the intricate regulations between miRNAs and HIF-1α in modulating a wide variety of processes, including proliferation, metastasis, apoptosis, and drug resistance, etc. miRNAs are a class of small noncoding RNAs which function as negative regulators by directly targeting mRNAs. Evidence shows that miRNAs can be regulated by HIF-1α at transcriptional level. In turn, HIF-1α itself can be modulated by many miRNAs whose alterations have been implicated in tumorigenesis, thus forming a reciprocal regulation network. These findings add a new layer of complexity to our understanding of HIF-1α regulatory networks. Here, we will provide a comprehensive overview of the current advances about the bidirectional interactions between HIF-1α and miRNAs in human cancers. Besides, the review will summarize the roles of miRNAs/HIF-1α crosstalk according to various cellular processes. Finally, the potential values of miRNAs/HIF-1α loops in clinical applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. https://doi.org/10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  2. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007(407):cm8. https://doi.org/10.1126/stke.4072007cm8

    Article  PubMed  Google Scholar 

  3. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science (New York, NY) 292(5516):468–472. https://doi.org/10.1126/science.1059796

    Article  CAS  Google Scholar 

  4. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda, Md) 19:176–182. https://doi.org/10.1152/physiol.00001.2004

    Article  CAS  Google Scholar 

  5. Chan DA, Sutphin PD, Yen SE, Giaccia AJ (2005) Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol 25(15):6415–6426. https://doi.org/10.1128/mcb.25.15.6415-6426.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D’Angelo G, Duplan E, Boyer N, Vigne P, Frelin C (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 278(40):38183–38187. https://doi.org/10.1074/jbc.M302244200

    Article  CAS  PubMed  Google Scholar 

  7. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309. https://doi.org/10.1016/j.molcel.2010.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402. https://doi.org/10.1016/j.molcel.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  9. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634. https://doi.org/10.1038/onc.2009.441

    Article  CAS  PubMed  Google Scholar 

  10. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science (New York, NY) 260(5112):1317–1320

    Article  CAS  Google Scholar 

  11. Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66(22):3539–3554. https://doi.org/10.1007/s00018-009-0147-7

    Article  CAS  PubMed  Google Scholar 

  12. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138. https://doi.org/10.1074/jbc.M001914200

    Article  CAS  PubMed  Google Scholar 

  13. Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW (2007) Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer 96(8):1284–1292. https://doi.org/10.1038/sj.bjc.6603675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF (2015) Hypoxia inducible factor-1alpha: its role in colorectal carcinogenesis and metastasis. Cancer Lett 366(1):11–18. https://doi.org/10.1016/j.canlet.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Haque I, Banerjee S, Mehta S, De A, Majumder M, Mayo MS, Kambhampati S, Campbell DR, Banerjee SK (2011) Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1alpha-TWIST signaling networks in human breast cancer cells. J Biol Chem 286(50):43475–43485. https://doi.org/10.1074/jbc.M111.284158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM, Wang LR, Zhang KZ, Zhang QB, Ao JY, Wang M, Wu WZ, Wang L, Tang ZY, Sun HC (2013) MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2alpha/Akt/HIF-1alpha pathway in hepatocellular carcinoma. PLoS One 8(10):e77957. https://doi.org/10.1371/journal.pone.0077957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang C, Tian W, Meng L, Qu L, Shou C (2016) PRL-3 promotes gastric cancer migration and invasion through a NF-kappaB-HIF-1alpha-miR-210 axis. J Mol Med (Berlin, Germany) 94(4):401–415. https://doi.org/10.1007/s00109-015-1350-7

    Article  CAS  Google Scholar 

  18. Brahimi-Horn MC, Ben-Hail D, Ilie M, Gounon P, Rouleau M, Hofman V, Doyen J, Mari B, Shoshan-Barmatz V, Hofman P, Pouyssegur J, Mazure NM (2012) Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance. Can Res 72(8):2140–2150. https://doi.org/10.1158/0008-5472.can-11-3940

    Article  CAS  Google Scholar 

  19. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Can Res 59(22):5830–5835

    CAS  Google Scholar 

  20. Shen XH, Qi P, Du X (2015) Long non-coding RNAs in cancer invasion and metastasis. Mod Pathol 28(1):4–13. https://doi.org/10.1038/modpathol.2014.75

    Article  CAS  PubMed  Google Scholar 

  21. Munipalle PC, Viswanath YK, Davis PA, Scoones D (2011) Prognostic value of hypoxia inducible factor 1alpha in esophageal squamous cell carcinoma. Dis Esophagus 24(3):177–181. https://doi.org/10.1111/j.1442-2050.2010.01122.x

    Article  CAS  PubMed  Google Scholar 

  22. Marton I, Knezevic F, Ramic S, Milosevic M, Tomas D (2012) Immunohistochemical expression and prognostic significance of HIF-1alpha and VEGF-C in neuroendocrine breast cancer. Anticancer Res 32(12):5227–5232

    PubMed  Google Scholar 

  23. Shen W, Li HL, Liu L, Cheng JX (2017) Expression levels of PTEN, HIF-1alpha, and VEGF as prognostic factors in ovarian cancer. Eur Rev Med Pharmacol Sci 21(11):2596–2603

    CAS  PubMed  Google Scholar 

  24. Gong L, Zhang W, Zhou J, Lu J, **ong H, Shi X, Chen J (2013) Prognostic value of HIFs expression in head and neck cancer: a systematic review. PLoS One 8(9):e75094. https://doi.org/10.1371/journal.pone.0075094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ben Lassoued A, Beaufils N, Dales JP, Gabert J (2013) Hypoxia-inducible factor-1alpha as prognostic marker. Expert Opin Med Diagn 7(1):53–70. https://doi.org/10.1517/17530059.2012.719022

    Article  CAS  PubMed  Google Scholar 

  26. Keremu A, Aini A, Maimaitirexiati Y, Liang Z, Aila P, **erela P, Tusun A, Moming H, Yusufu A (2017) Overcoming cisplatin resistance in osteosarcoma through the miR-199a-modulated inhibition of HIF-1alpha. Biosci Rep. https://doi.org/10.1042/bsr20170080

    Article  PubMed  Google Scholar 

  27. Gao Y, Feng B, Lu L, Han S, Chu X, Chen L, Wang R (2017) MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. Oncotarget. https://doi.org/10.18632/oncotarget.17364

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xu W, Zhang Z, Zou K, Cheng Y, Yang M, Chen H, Wang H, Zhao J, Chen P, He L, Chen X, Geng L, Gong S (2017) MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis. Cell Death Dis 8(5):e2761. https://doi.org/10.1038/cddis.2017.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li B, He L, Zuo D, He W, Wang Y, Zhang Y, Liu W, Yuan Y (2017) Mutual regulation of MiR-199a-5p and HIF-1alpha modulates the warburg effect in hepatocellular carcinoma. J Cancer 8(6):940–949. https://doi.org/10.7150/jca.17496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu N, **a WY, Liu SS, Chen HY, Sun L, Liu MY, Li LF, Lu HM, Fu YJ, Wang P, Wu H, Gao JX (2016) MicroRNA-101 targets von Hippel-Lindau tumor suppressor (VHL) to induce HIF1alpha mediated apoptosis and cell cycle arrest in normoxia condition. Sci Rep 6:20489. https://doi.org/10.1038/srep20489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dang K, Myers KA (2015) The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 16(3):6353–6372. https://doi.org/10.3390/ijms16036353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Q, Zhang RW, Sui PC, He HT, Ding L (2015) Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol 21(39):10956–10981. https://doi.org/10.3748/wjg.v21.i39.10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q, Wu B (2015) MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep 33(4):1571–1578. https://doi.org/10.3892/or.2015.3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ang C, O’Reilly EM, Abou-Alfa GK (2011) MicroRNA, hypoxic stress and hepatocellular carcinoma: future directions. J Gastroenterol Hepatol 26(11):1586–1588. https://doi.org/10.1111/j.1440-1746.2011.06903.x

    Article  CAS  PubMed  Google Scholar 

  35. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865. https://doi.org/10.1038/nrd4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73(13):2491–2509. https://doi.org/10.1007/s00018-016-2174-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki H, Maruyama R, Yamamoto E, Niinuma T, Kai M (2016) Relationship between noncoding RNA dysregulation and epigenetic mechanisms in cancer. Adv Exp Med Biol 927:109–135. https://doi.org/10.1007/978-981-10-1498-7_4

    Article  CAS  PubMed  Google Scholar 

  38. Yang Z, Guo X, Li G, Shi Y, Li L (2016) Long noncoding RNAs as potential biomarkers in gastric cancer: opportunities and challenges. Cancer Lett 371(1):62–70. https://doi.org/10.1016/j.canlet.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  39. Dong L, Qi P, Xu MD, Ni SJ, Huang D, Xu QH, Weng WW, Tan C, Sheng WQ, Zhou XY, Du X (2015) Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Int J Cancer 137(5):1128–1135. https://doi.org/10.1002/ijc.29484

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, Mo YY (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 5:e1008. https://doi.org/10.1038/cddis.2013.541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li T, Yang XD, Ye CX, Shen ZL, Yang Y, Wang B, Guo P, Gao ZD, Ye YJ, Jiang KW, Wang S (2017) Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene. Cell Cycle (Georgetown, Tex) 16(2):224–231. https://doi.org/10.1080/15384101.2016.1261768

    Article  CAS  Google Scholar 

  42. Shih JW, Kung HJ (2017) Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci 24(1):53. https://doi.org/10.1186/s12929-017-0358-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, Wang T, Guo Z, Li X (2015) Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res 43(7):3478–3489. https://doi.org/10.1093/nar/gkv233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong J, Huang R, Su Z, Zhang M, Xu M, Gong J, Chen N, Zeng H, Chen X, Zhou Q (2017) Downregulation of miR-199a-5p promotes prostate adeno-carcinoma progression through loss of its inhibition of HIF-1alpha. Oncotarget. https://doi.org/10.18632/oncotarget.18315

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shang W, Chen X, Nie L, Xu M, Chen N, Zeng H, Zhou Q (2013) MiR199b suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in prostate cancer cells. Int J Mol Sci 14(4):8422–8436. https://doi.org/10.3390/ijms14048422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ye H, Pang L, Wu Q, Zhu Y, Guo C, Deng Y, Zheng X (2015) A critical role of mir-199a in the cell biological behaviors of colorectal cancer. Diagn Pathol 10:65. https://doi.org/10.1186/s13000-015-0260-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Joshi HP, Subramanian IV, Schnettler EK, Ghosh G, Rupaimoole R, Evans C, Saluja M, **g Y, Cristina I, Roy S, Zeng Y, Shah VH, Sood AK, Ramakrishnan S (2014) Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis. Proc Natl Acad Sci USA 111(14):5331–5336. https://doi.org/10.1073/pnas.1317242111

    Article  CAS  PubMed  Google Scholar 

  48. Obernosterer G, Leuschner PJ, Alenius M, Martinez J (2006) Post-transcriptional regulation of microRNA expression. RNA (New York, NY) 12(7):1161–1167. https://doi.org/10.1261/rna.2322506

    Article  CAS  Google Scholar 

  49. Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272(1):59–73. https://doi.org/10.1111/j.1432-1033.2004.04389.x

    Article  CAS  PubMed  Google Scholar 

  50. ** Y, Chen D, Cabay RJ, Wang A, Crowe DL, Zhou X (2013) Role of microRNA-138 as a potential tumor suppressor in head and neck squamous cell carcinoma. Int Rev Cell Mol Biol 303:357–385. https://doi.org/10.1016/b978-0-12-407697-6.00009-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yeh YM, Chuang CM, Chao KC, Wang LH (2013) MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha. Int J Cancer 133(4):867–878. https://doi.org/10.1002/ijc.28086

    Article  CAS  PubMed  Google Scholar 

  52. Cai Q, Wang Z, Wang S, Weng M, Zhou D, Li C, Wang J, Chen E, Quan Z (2017) Long non-coding RNA LINC00152 promotes gallbladder cancer metastasis and epithelial–mesenchymal transition by regulating HIF-1alpha via miR-138. Open Biol. https://doi.org/10.1098/rsob.160247

    Article  PubMed  PubMed Central  Google Scholar 

  53. Song T, Zhang X, Wang C, Wu Y, Cai W, Gao J, Hong B (2011) MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer Prev 12(5):1307–1311

    PubMed  Google Scholar 

  54. Chen Y, Zhang Z, Luo C, Chen Z, Zhou J (2016) MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1alpha-mediated glycolysis. Oncol Rep 36(1):471–479. https://doi.org/10.3892/or.2016.4824

    Article  CAS  PubMed  Google Scholar 

  55. Li X, Wu Y, Liu A, Tang X (2016) Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1alpha feedback regulatory loop. Tumour Biol 37(11):14733–14743. https://doi.org/10.1007/s13277-016-5348-8

    Article  CAS  PubMed  Google Scholar 

  56. Wu F, Huang W, Wang X (2015) microRNA-18a regulates gastric carcinoma cell apoptosis and invasion by suppressing hypoxia-inducible factor-1alpha expression. Exp Ther Med 10(2):717–722. https://doi.org/10.3892/etm.2015.2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han C, Shen JK, Hornicek FJ, Kan Q (1860) Duan Z (2017) Regulation of microRNA-1 (miR-1) expression in human cancer. Biochem Biophys Acta 2:227–232. https://doi.org/10.1016/j.bbagrm.2016.12.004

    Article  CAS  Google Scholar 

  58. Lu Y, Ji N, Wei W, Sun W, Gong X, Wang X (2017) MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1alpha) in the tumor microenvironments. Biol Open 6(2):252–259. https://doi.org/10.1242/bio.021774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu L, Wang Y, Bai R, Yang K, Tian Z (2016) MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1alpha regulation. Oncogenesis 5:e224. https://doi.org/10.1038/oncsis.2016.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang R, Zhao J, Xu J, Wang J, Jia J (2016) miR-526b-3p functions as a tumor suppressor in colon cancer by regulating HIF-1alpha. Am J Transl Res 8(6):2783–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamakuchi M, Yagi S, Ito T, Lowenstein CJ (2011) MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 6(5):e20291. https://doi.org/10.1371/journal.pone.0020291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Z, Cai X, Huang C, Xu J, Liu A (2016) miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1alpha. Oncol Rep 35(3):1696–1702. https://doi.org/10.3892/or.2015.4529

    Article  CAS  PubMed  Google Scholar 

  63. Cheng CW, Chen PM, Hsieh YH, Weng CC, Chang CW, Yao CC, Hu LY, Wu PE, Shen CY (2015) Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1alpha in ERK-responsive lung cancer. Oncotarget 6(42):44222–44238. https://doi.org/10.18632/oncotarget.5826

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, Yu SL, Chen JS, Chang KJ, Jee SH, Tan CT, Lin MT, Kuo ML (2010) MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Can Res 70(7):2675–2685. https://doi.org/10.1158/0008-5472.can-09-2448

    Article  CAS  Google Scholar 

  65. Ambade A, Satishchandran A, Szabo G (2016) Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1alpha activation. Sci Rep 6:21340. https://doi.org/10.1038/srep21340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takahashi K, Yan IK, Haga H, Patel T (2014) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127(Pt 7):1585–1594. https://doi.org/10.1242/jcs.141069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kulshreshtha R, Ferracin M, Negrini M, Calin GA, Davuluri RV, Ivan M (2007) Regulation of microRNA expression: the hypoxic component. Cell Cycle (Georgetown, Tex) 6(12):1426–1431

    Article  CAS  Google Scholar 

  68. Voellenkle C, Rooij J, Guffanti A, Brini E, Fasanaro P, Isaia E, Croft L, David M, Capogrossi MC, Moles A, Felsani A, Martelli F (2012) Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA (New York, NY) 18(3):472–484. https://doi.org/10.1261/rna.027615.111

    Article  CAS  Google Scholar 

  69. Gee HE, Ivan C, Calin GA, Ivan M (2014) HypoxamiRs and cancer: from biology to targeted therapy. Antioxid Redox Signal 21(8):1220–1238. https://doi.org/10.1089/ars.2013.5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang L, Sun ZJ, Bian Y, Kulkarni AB (2013) MicroRNA-135b acts as a tumor promoter by targeting the hypoxia-inducible factor pathway in genetically defined mouse model of head and neck squamous cell carcinoma. Cancer Lett 331(2):230–238. https://doi.org/10.1016/j.canlet.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. **e Z, Cao L, Zhang J (2013) miR-21 modulates paclitaxel sensitivity and hypoxia-inducible factor-1alpha expression in human ovarian cancer cells. Oncol Lett 6(3):795–800. https://doi.org/10.3892/ol.2013.1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, Zhu Z, Mo Z, Wu C, Chen X (2012) MiR-21 regulates epithelial–mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 103(6):1058–1064. https://doi.org/10.1111/j.1349-7006.2012.02281.x

    Article  CAS  PubMed  Google Scholar 

  73. Yang W, Ma J, Zhou W, Zhou X, Cao B, Fan D, Hong L (2017) Biological implications and clinical value of mir-210 in gastrointestinal cancer. Expert Rev Gastroenterol Hepatol 11(6):539–548. https://doi.org/10.1080/17474124.2017.1309281

    Article  CAS  PubMed  Google Scholar 

  74. Ren CX, Leng RX, Fan YG, Pan HF, Wu CH, Ye DQ (2016) MicroRNA-210 and its theranostic potential. Expert Opin Ther Targets 20(11):1325–1338. https://doi.org/10.1080/14728222.2016.1206890

    Article  CAS  PubMed  Google Scholar 

  75. Wang Z, Deng M, Liu Z, Wu S (2017) Hypoxia-induced miR-210 promoter demethylation enhances proliferation, autophagy and angiogenesis of schwannoma cells. Oncol Rep 37(5):3010–3018. https://doi.org/10.3892/or.2017.5511

    Article  CAS  PubMed  Google Scholar 

  76. Liu T, Zhao L, Chen W, Li Z, Hou H, Ding L, Li X (2014) Inactivation of von Hippel-Lindau increases ovarian cancer cell aggressiveness through the HIF1alpha/miR-210/VMP1 signaling pathway. Int J Mol Med 33(5):1236–1242. https://doi.org/10.3892/ijmm.2014.1661

    Article  CAS  PubMed  Google Scholar 

  77. Li L, Huang K, You Y, Fu X, Hu L, Song L, Meng Y (2014) Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol 44(6):2111–2120. https://doi.org/10.3892/ijo.2014.2368

    Article  CAS  PubMed  Google Scholar 

  78. Chen KC, Liao YC, Wang JY, Lin YC, Chen CH, Juo SH (2015) Oxidized low-density lipoprotein is a common risk factor for cardiovascular diseases and gastroenterological cancers via epigenomical regulation of microRNA-210. Oncotarget 6(27):24105–24118. https://doi.org/10.18632/oncotarget.4152

    Article  PubMed  PubMed Central  Google Scholar 

  79. Saenz-de-Santa-Maria I, Bernardo-Castineira C, Secades P, Bernaldo-de-Quiros S, Rodrigo JP, Astudillo A, Chiara MD (2017) Clinically relevant HIF-1alpha-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget 8(8):13730–13746. https://doi.org/10.18632/oncotarget.14629

    Article  PubMed  PubMed Central  Google Scholar 

  80. Merlo A, Bernardo-Castineira C, Saenz-de-Santa-Maria I, Pitiot AS, Balbin M, Astudillo A, Valdes N, Scola B, Del Toro R, Mendez-Ferrer S, Piruat JI, Suarez C, Chiara MD (2017) Role of VHL, HIF1A and SDH on the expression of miR-210: implications for tumoral pseudo-hypoxic fate. Oncotarget 8(4):6700–6717. https://doi.org/10.18632/oncotarget.14265

    Article  PubMed  Google Scholar 

  81. Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M (2011) Overexpression of miR-210, a downstream target of HIF1alpha, causes centrosome amplification in renal carcinoma cells. J Pathol 224(2):280–288. https://doi.org/10.1002/path.2860

    Article  CAS  PubMed  Google Scholar 

  82. Kai AK, Chan LK, Lo RC, Lee JM, Wong CC, Wong JC, Ng IO (2016) Down-regulation of TIMP2 by HIF-1alpha/miR-210/HIF-3alpha regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma. Hepatology (Baltimore, MD) 64(2):473–487. https://doi.org/10.1002/hep.28577

    Article  CAS  Google Scholar 

  83. Sun Y, **ng X, Liu Q, Wang Z, **n Y, Zhang P, Hu C, Liu Y (2015) Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol 46(2):750–756. https://doi.org/10.3892/ijo.2014.2745

    Article  CAS  PubMed  Google Scholar 

  84. Yu P, Fan S, Huang L, Yang L, Du Y (2015) MIR210 as a potential molecular target to block invasion and metastasis of gastric cancer. Med Hypotheses 84(3):209–212. https://doi.org/10.1016/j.mehy.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  85. Chen WY, Liu WJ, Zhao YP, Zhou L, Zhang TP, Chen G, Shu H (2012) Induction, modulation and potential targets of miR-210 in pancreatic cancer cells. Hepatobil Pancreat Dis Int 11(3):319–324

    Article  CAS  Google Scholar 

  86. Li CL, Zhou XL, Wang YD, **g SW, Yang CR, Sun GG, Liu Q, Cheng YJ, Wang L (2014) miR-210 regulates esophageal cancer cell proliferation by inducing G(2)/M phase cell cycle arrest through targeting PLK1. Mol Med Rep 10(4):2099–2104. https://doi.org/10.3892/mmr.2014.2416

    Article  CAS  PubMed  Google Scholar 

  87. Song L, Liu S, Zhang L, Yao H, Gao F, Xu D, Li Q (2016) MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1alpha feedback loop and the Akt-mTOR signaling pathway. Tumour Biol 37(9):12161–12168. https://doi.org/10.1007/s13277-016-5073-3

    Article  CAS  PubMed  Google Scholar 

  88. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, Zhu G (2016) Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Can Res 76(7):1770–1780. https://doi.org/10.1158/0008-5472.can-15-1625

    Article  CAS  Google Scholar 

  89. Mace TA, Collins AL, Wojcik SE, Croce CM, Lesinski GB, Bloomston M (2013) Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J Surg Res 184(2):855–860. https://doi.org/10.1016/j.jss.2013.04.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao J, Qiao CR, Ding Z, Sheng YL, Li XN, Yang Y, Zhu DY, Zhang CY, Liu DL, Wu K, Zhao S (2017) A novel pathway in NSCLC cells: miR191, targeting NFIA, is induced by chronic hypoxia, and promotes cell proliferation and migration. Mol Med Rep 15(3):1319–1325. https://doi.org/10.3892/mmr.2017.6100

    Article  CAS  PubMed  Google Scholar 

  91. He C, Wang L, Zhang J, Xu H (2017) Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol Cancer 16(1):35. https://doi.org/10.1186/s12943-017-0603-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ge X, Liu X, Lin F, Li P, Liu K, Geng R, Dai C, Lin Y, Tang W, Wu Z, Chang J, Lu J, Li J (2016) MicroRNA-421 regulated by HIF-1alpha promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget 7(17):24466–24482. https://doi.org/10.18632/oncotarget.8228

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao Q, Li Y, Tan BB, Fan LQ, Yang PG, Tian Y (2015) HIF-1alpha induces multidrug resistance in gastric cancer cells by inducing MiR-27a. PLoS One 10(8):e0132746. https://doi.org/10.1371/journal.pone.0132746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ayremlou N, Mozdarani H, Mowla SJ, Delavari A (2015) Increased levels of serum and tissue miR-107 in human gastric cancer: correlation with tumor hypoxia. Cancer Biomark Sect A Dis Mark 15(6):851–860. https://doi.org/10.3233/cbm-150529

    Article  CAS  Google Scholar 

  95. Seok JK, Lee SH, Kim MJ, Lee YM (2014) MicroRNA-382 induced by HIF-1alpha is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res 42(12):8062–8072. https://doi.org/10.1093/nar/gku515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang XJ, Zhang DL, Fu C, Wei BZ, Li GJ (2016) MiR-183 modulates multi-drug resistance in hepatocellular cancer (HCC) cells via miR-183-IDH2/SOCS6-HIF-1alpha feedback loop. Eur Rev Med Pharmacol Sci 20(10):2020–2027

    PubMed  Google Scholar 

  97. Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X, Wang N (2015) Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis 18(3):373–382. https://doi.org/10.1007/s10456-015-9474-5

    Article  CAS  PubMed  Google Scholar 

  98. Blick C, Ramachandran A, McCormick R, Wigfield S, Cranston D, Catto J, Harris AL (2015) Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis. Br J Cancer 113(4):634–644. https://doi.org/10.1038/bjc.2015.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan Q, Gao W, Liu B, Ye W (2014) Upregulation of miR-184 enhances the malignant biological behavior of human glioma cell line A172 by targeting FIH-1. Cell Physiol Biochem 34(4):1125–1136. https://doi.org/10.1159/000366326

    Article  CAS  PubMed  Google Scholar 

  100. Gits CM, van Kuijk PF, de Rijck JC, Muskens N, Jonkers MB, van Wilfred IF, Mathijssen RH, Verweij J, Sleijfer S, Wiemer EA (2014) MicroRNA response to hypoxic stress in soft tissue sarcoma cells: microRNA mediated regulation of HIF3alpha. BMC Cancer 14:429. https://doi.org/10.1186/1471-2407-14-429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu S, He C, Deng S, Li X, Cui S, Zeng Z, Liu M, Zhao S, Chen J, ** Y, Chen H, Deng S, Liu Y, Wang C, Zhao G (2016) MiR-548an, transcriptionally downregulated by HIF1alpha/HDAC1, suppresses tumorigenesis of pancreatic cancer by targeting vimentin expression. Mol Cancer Ther 15(9):2209–2219. https://doi.org/10.1158/1535-7163.mct-15-0877

    Article  CAS  PubMed  Google Scholar 

  102. He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, Duan CW, Hong DL, Tanaka T, Chen GQ, Zhao Q (2013) HIF-1alpha downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ 20(3):408–418. https://doi.org/10.1038/cdd.2012.130

    Article  CAS  PubMed  Google Scholar 

  103. Guo XF, Wang AY, Liu J (2016) HIFs-MiR-33a-Twsit1 axis can regulate invasiveness of hepatocellular cancer cells. Eur Rev Med Pharmacol Sci 20(14):3011–3016

    PubMed  Google Scholar 

  104. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9:108. https://doi.org/10.1186/1476-4598-9-108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li H, Rokavec M, Jiang L, Horst D, Hermeking H (2017) Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology 153(2):505–520. https://doi.org/10.1053/j.gastro.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  106. Wang X, Ren H, Zhao T, Ma W, Dong J, Zhang S, **n W, Yang S, Jia L, Hao J (2016) Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget 7(12):13717–13729. https://doi.org/10.18632/oncotarget.7263

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lo Dico A, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, Mancone C, Tripodi M, Ottobrini L, Alessandro R, Conigliaro A (2016) MiR675-5p acts on HIF-1alpha to sustain hypoxic responses: a new therapeutic strategy for glioma. Theranostics 6(8):1105–1118. https://doi.org/10.7150/thno.14700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, Takahashi T (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Can Res 68(14):5540–5545. https://doi.org/10.1158/0008-5472.can-07-6460

    Article  CAS  Google Scholar 

  109. Lei Z, Li B, Yang Z, Fang H, Zhang GM, Feng ZH, Huang B (2009) Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4(10):e7629. https://doi.org/10.1371/journal.pone.0007629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cascio S, D’Andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N, Russo A (2010) miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J Cell Physiol 224(1):242–249. https://doi.org/10.1002/jcp.22126

    Article  CAS  PubMed  Google Scholar 

  111. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 107(14):6334–6339. https://doi.org/10.1073/pnas.0911082107

    Article  PubMed  Google Scholar 

  112. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31(19):4087–4096. https://doi.org/10.1128/mcb.01276-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Investig 120(11):4141–4154

    Article  CAS  Google Scholar 

  114. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, Ramakrishnan S (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120(11):4141–4154. https://doi.org/10.1172/jci42980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226(2):352–364. https://doi.org/10.1002/path.3022

    Article  CAS  PubMed  Google Scholar 

  116. Yang X, Lei S, Long J, Liu X, Wu Q (2016) MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1alpha. Mol Med Rep 13(6):5241–5247. https://doi.org/10.3892/mmr.2016.5202

    Article  CAS  PubMed  Google Scholar 

  117. Shan Y, Li X, You B, Shi S, Zhang Q, You Y (2015) MicroRNA-338 inhibits migration and proliferation by targeting hypoxia-induced factor 1alpha in nasopharyngeal carcinoma. Oncol Rep 34(4):1943–1952. https://doi.org/10.3892/or.2015.4195

    Article  CAS  PubMed  Google Scholar 

  118. Tsuchiya S, Fujiwara T, Sato F, Shimada Y, Tanaka E, Sakai Y, Shimizu K, Tsujimoto G (2011) MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem 286(1):420–428. https://doi.org/10.1074/jbc.M110.170852

    Article  CAS  PubMed  Google Scholar 

  119. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845. https://doi.org/10.1155/2014/150845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS, Niu HT (2015) Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat 38(3):117–122. https://doi.org/10.1159/000375435

    Article  CAS  PubMed  Google Scholar 

  122. Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B, Hofman V, Fourre S, Magnone V, Ricci JE, Pouyssegur J, Gounon P, Hofman P, Barbry P, Mari B (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478. https://doi.org/10.1038/cdd.2010.119

    Article  CAS  PubMed  Google Scholar 

  123. Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29(30):4362–4368. https://doi.org/10.1038/onc.2010.193

    Article  CAS  PubMed  Google Scholar 

  124. Li JY, Zhang Y, Zhang WH, Jia S, Kang Y, Zhu XY (2012) Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac J Cancer Prev 13(5):1901–1906

    Article  Google Scholar 

  125. Giordano G, Febbraro A, Venditti M, Campidoglio S, Olivieri N, Raieta K, Parcesepe P, Imbriani GC, Remo A, Pancione M (2014) Targeting angiogenesis and tumor microenvironment in metastatic colorectal cancer: role of aflibercept. Gastroenterol Res Pract 2014:526178. https://doi.org/10.1155/2014/526178

    Article  PubMed  PubMed Central  Google Scholar 

  126. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. https://doi.org/10.1038/nature04478

    Article  CAS  PubMed  Google Scholar 

  127. Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, Costa MA (2012) Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34 + cells enhances cell-mediated angiogenesis. J Cell Mol Med 16(10):2413–2421. https://doi.org/10.1111/j.1582-4934.2012.01557.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yasuda H (2008) Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19(2):205–216. https://doi.org/10.1016/j.niox.2008.04.026

    Article  CAS  PubMed  Google Scholar 

  129. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Can Res 62(12):3387–3394

    CAS  Google Scholar 

  130. Comerford KM, Cummins EP, Taylor CT (2004) c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia. Can Res 64(24):9057–9061. https://doi.org/10.1158/0008-5472.can-04-1919

    Article  CAS  Google Scholar 

  131. Moeller BJ, Dewhirst MW (2006) HIF-1 and tumour radiosensitivity. Br J Cancer 95(1):1–5. https://doi.org/10.1038/sj.bjc.6603201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tafsiri E, Darbouy M, Shadmehr MB, Cho WC, Karimipoor M (2016) Abberant expression of oncogenic and tumor-suppressive microRNAs and their target genes in human adenocarcinoma alveolar basal epithelial cells. J Cancer Res Ther 12(1):395–400. https://doi.org/10.4103/0973-1482.148673

    Article  CAS  PubMed  Google Scholar 

  133. Hwang HW, Baxter LL, Loftus SK, Cronin JC, Trivedi NS, Borate B, Pavan WJ (2014) Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A. Pigment Cell Melanoma Res 27(5):777–787. https://doi.org/10.1111/pcmr.12255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ke HL, Li WM, Lin HH, Hsu WC, Hsu YL, Chang LL, Huang CN, Li CC, Chang HP, Yeh HC, Li CF, Wu WJ (2017) Hypoxia-regulated MicroRNA-210 overexpression is associated with tumor development and progression in upper tract urothelial carcinoma. Int J Med Sci 14(6):578–584. https://doi.org/10.7150/ijms.15699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348. https://doi.org/10.1158/1078-0432.ccr-07-1755

    Article  CAS  PubMed  Google Scholar 

  136. Cheng HH, Mitchell PS, Kroh EM, Dowell AE, Chery L, Siddiqui J, Nelson PS, Vessella RL, Knudsen BS, Chinnaiyan AM, Pienta KJ, Morrissey C, Tewari M (2013) Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PLoS One 8(7):e69239. https://doi.org/10.1371/journal.pone.0069239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu K, Yao H, Lei S, **ong L, Qi H, Qian K, Liu J, Wang P, Zhao H (2017) The miR-124-p63 feedback loop modulates colorectal cancer growth. Oncotarget 8(17):29101–29115. https://doi.org/10.18632/oncotarget.16248

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gao Y, Chen L, Song H, Chen Y, Wang R, Feng B (2016) A double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells. Oncotarget 7(19):27613–27626. https://doi.org/10.18632/oncotarget.8376

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhang Y, Shen WL, Shi ML, Zhang LZ, Zhang Z, Li P, **ng LY, Luo FY, Sun Q, Zheng XF, Yang X, Zhao ZH (2015) Involvement of aberrant miR-139/Jun feedback loop in human gastric cancer. Biochem Biophys Acta 1853 2:481–488. https://doi.org/10.1016/j.bbamcr.2014.12.002

    Article  CAS  Google Scholar 

  140. Lin CC, Jiang W, Mitra R, Cheng F, Yu H, Zhao Z (2015) Regulation rewiring analysis reveals mutual regulation between STAT1 and miR-155-5p in tumor immunosurveillance in seven major cancers. Sci Rep 5:12063. https://doi.org/10.1038/srep12063

    Article  PubMed  PubMed Central  Google Scholar 

  141. Moes M, Le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E (2012) A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One 7(4):e35440. https://doi.org/10.1371/journal.pone.0035440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chiang CH, Chu PY, Hou MF, Hung WC (2016) MiR-182 promotes proliferation and invasion and elevates the HIF-1alpha-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res 6(8):1785–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Irlam-Jones JJ, Eustace A, Denley H, Choudhury A, Harris AL, Hoskin PJ, West CM (2016) Expression of miR-210 in relation to other measures of hypoxia and prediction of benefit from hypoxia modification in patients with bladder cancer. Br J Cancer 115(5):571–578. https://doi.org/10.1038/bjc.2016.218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, Wang K, Shen B (2013) In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS One 8(8):e71472. https://doi.org/10.1371/journal.pone.0071472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yang W, Wei J, Guo T, Shen Y, Liu F (2014) Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance. Exp Cell Res 326(1):22–35. https://doi.org/10.1016/j.yexcr.2014.05.022

    Article  CAS  PubMed  Google Scholar 

  146. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 104(23):9667–9672. https://doi.org/10.1073/pnas.0703820104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Grant from the National Natural Scientific Foundation of China (81171923), Grant from the State Key Laboratory of Cancer Biology (CBSKL2014Z13) and Grant from the National Clinical Research Center for Digestive Diseases(2015BAI13B07). It was not supported by any private or public company or organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Ma, J., Zhou, W. et al. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell. Mol. Life Sci. 76, 453–471 (2019). https://doi.org/10.1007/s00018-018-2941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2941-6

Keywords

Navigation