Log in

Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

CK2 denotes a ubiquitous and pleiotropic protein kinase whose holoenzyme is composed of two catalytic (α and/or α′) and two regulatory β subunits. The CK2 consensus sequence, S/T-x-x-D/E/pS/pT is present in numerous phosphosites, but it is not clear how many of these are really generated by CK2. To gain information about this issue, advantage has been taken of C2C12 cells entirely deprived of both CK2 catalytic subunits by the CRISPR/Cas9 methodology. A comparative SILAC phosphoproteomics analysis reveals that, although about 30% of the quantified phosphosites do conform to the CK2 consensus, only one-third of these are substantially reduced in the CK2α/α′(−/−) cells, consistent with their generation by CK2. A parallel study with C2C12 cells deprived of the regulatory β subunit discloses a role of this subunit in determining CK2 targeting. We also find that phosphosites notoriously generated by CK2 are not fully abrogated in CK2α/α′(−/−) cells, while some phosphosites unrelated to CK2 are significantly altered. Collectively taken our data allow to conclude that the phosphoproteome generated by CK2 is not as ample and rigidly pre-determined as it was believed before. They also show that the lack of CK2 promotes phosphoproteomics perturbations attributable to kinases other than CK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allende CC, Allende JE (1998) Promiscuous subunit interactions: a possible mechanism for the regulation of protein kinase CK2. J Cell Biochem Suppl 30–31:129–136

    Article  PubMed  Google Scholar 

  2. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115(Pt 20):3873–3878

    Article  CAS  PubMed  Google Scholar 

  3. St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66(11–12):1817–1829. https://doi.org/10.1007/s00018-009-9150-2

    Article  CAS  PubMed  Google Scholar 

  4. Pinna LA (2003) The raison d’etre of constitutively active protein kinases: the lesson of CK2. Acc Chem Res 36(6):378–384. https://doi.org/10.1021/ar020164f

    Article  CAS  PubMed  Google Scholar 

  5. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(Pt 1):1–15. https://doi.org/10.1042/BJ20021469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ortega CE, Seidner Y, Dominguez I (2014) Mining CK2 in cancer. PLoS One 9(12):e115609. https://doi.org/10.1371/journal.pone.0115609

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu X, Landesman-Bollag E, Channavajhala PL, Seldin DC (1999) Murine protein kinase CK2: gene and oncogene. Mol Cell Biochem 191(1–2):65–74

    Article  CAS  PubMed  Google Scholar 

  8. Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21(34):5280–5288. https://doi.org/10.1038/sj.onc.1205640

    Article  CAS  PubMed  Google Scholar 

  9. Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 3:499–504. https://doi.org/10.1016/j.bbapap.2009.07.018

    Google Scholar 

  10. Cozza G, Pinna LA (2016) Casein kinases as potential therapeutic targets. Expert Opin Ther Targets 20(3):319–340. https://doi.org/10.1517/14728222.2016.1091883

    Article  CAS  PubMed  Google Scholar 

  11. Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Rice WG, Ryckman DM, Anderes K (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 356(1–2):37–43. https://doi.org/10.1007/s11010-011-0956-5

    Article  CAS  PubMed  Google Scholar 

  12. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368. https://doi.org/10.1096/fj.02-0473rev

    Article  CAS  PubMed  Google Scholar 

  13. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–520. https://doi.org/10.1093/nar/gku1267 (Database issue)

    Article  CAS  PubMed  Google Scholar 

  14. Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793(5):847–859. https://doi.org/10.1016/j.bbamcr.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  15. Venerando A, Cesaro L, Pinna LA (2017) From phosphoproteins to phosphoproteomes: a historical account. FEBS J. https://doi.org/10.1111/febs.14014

    PubMed  Google Scholar 

  16. Franchin C, Cesaro L, Salvi M, Millioni R, Iori E, Cifani P, James P, Arrigoni G, Pinna L (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854(6):609–623. https://doi.org/10.1016/j.bbapap.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  17. Franchin C, Salvi M, Arrigoni G, Pinna LA (2015) Proteomics perturbations promoted by the protein kinase CK2 inhibitor quinalizarin. Biochim Biophys Acta 1854((10 Pt B)):1676–1686. https://doi.org/10.1016/j.bbapap.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  18. Borgo C, Franchin C, Scalco S, Bosello-Travain V, Donella-Deana A, Arrigoni G, Salvi M, Pinna LA (2017) Generation and quantitative proteomics analysis of CK2alpha/alpha’(−/−) cells. Sci Rep 7:42409. https://doi.org/10.1038/srep42409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O’Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28(1):131–139. https://doi.org/10.1128/MCB.01119-07

    Article  CAS  PubMed  Google Scholar 

  20. Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7(9):1587–1597. https://doi.org/10.1074/mcp.M800113-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. https://doi.org/10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  22. Salvi M, Trashi E, Cozza G, Franchin C, Arrigoni G, Pinna L (2012) Investigation on PLK2 and PLK3 substrate recognition. Biochim Biophys Acta 1824(12):1366–1373. https://doi.org/10.1016/j.bbapap.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362. https://doi.org/10.1021/pr200611n

    Article  CAS  PubMed  Google Scholar 

  24. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J, **ao J, Cui J, Nguyen KB, Engel JL, Coon JJ, Grishin N, Pinna LA, Pagliarini DJ, Dixon JE (2015) A single kinase generates the majority of the secreted phosphoproteome. Cell 161(7):1619–1632. https://doi.org/10.1016/j.cell.2015.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 1(2):67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hagemann C, Kalmes A, Wixler V, Wixler L, Schuster T, Rapp UR (1997) The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett 403(2):200–202

    Article  CAS  PubMed  Google Scholar 

  29. Chen M, Cooper JA (1997) The beta subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci U S A 94(17):9136–9140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guerra B, Issinger OG, Wang JY (2003) Modulation of human checkpoint kinase Chk1 by the regulatory beta-subunit of protein kinase CK2. Oncogene 22(32):4933–4942. https://doi.org/10.1038/sj.onc.1206721

    Article  CAS  PubMed  Google Scholar 

  31. Mentzel B, Jauch E, Raabe T (2009) CK2beta interacts with and regulates p21-activated kinases in Drosophila. Biochem Biophys Res Commun 379(2):637–642. https://doi.org/10.1016/j.bbrc.2008.12.136

    Article  CAS  PubMed  Google Scholar 

  32. Litchfield DW, Luscher B (1993) Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 127–128:187–199

    Article  PubMed  Google Scholar 

  33. Luscher B, Litchfield DW (1994) Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem 220(2):521–526

    Article  CAS  PubMed  Google Scholar 

  34. Arrigoni G, Marin O, Pagano MA, Settimo L, Paolin B, Meggio F, Pinna LA (2004) Phosphorylation of calmodulin fragments by protein kinase CK2. Mechanistic aspects and structural consequences. Biochemistry 43(40):12788–12798. https://doi.org/10.1021/bi049365c

    Article  CAS  PubMed  Google Scholar 

  35. Marin O, Sarno S, Boschetti M, Pagano MA, Meggio F, Ciminale V, D’Agostino DM, Pinna LA (2000) Unique features of HIV-1 Rev protein phosphorylation by protein kinase CK2 (‘casein kinase-2’). FEBS Lett 481(1):63–67

    Article  CAS  PubMed  Google Scholar 

  36. Salvi M, Sarno S, Marin O, Meggio F, Itarte E, Pinna LA (2006) Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett 580(16):3948–3952. https://doi.org/10.1016/j.febslet.2006.06.031

    Article  CAS  PubMed  Google Scholar 

  37. Bian Y, Ye M, Wang C, Cheng K, Song C, Dong M, Pan Y, Qin H, Zou H (2013) Global screening of CK2 kinase substrates by an integrated phosphoproteomics workflow. Sci Rep 3:3460. https://doi.org/10.1038/srep03460

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4(10):793–805. https://doi.org/10.1038/nrc1455

    Article  CAS  PubMed  Google Scholar 

  39. Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275(1):390–397

    Article  CAS  PubMed  Google Scholar 

  40. Xu Y, Deng Y, Qing H (2015) The phosphorylation of alpha-synuclein: development and implication for the mechanism and therapy of the Parkinson’s disease. J Neurochem 135(1):4–18. https://doi.org/10.1111/jnc.13234

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Han G, Wang C, Cheng K, Li R, Liu H, Wei X, Ye M, Zou H (2011) A bead-based approach for large-scale identification of in vitro kinase substrates. Proteomics 11(24):4632–4637. https://doi.org/10.1002/pmic.201100339

    Article  CAS  PubMed  Google Scholar 

  42. Szyszka R (1999) Protein kinases phosphorylating acidic ribosomal proteins from yeast cells. Folia Microbiol (Praha) 44(2):142–152

    Article  CAS  Google Scholar 

  43. Huang YW, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS (2006) GTP binding and hydrolysis kinetics of human septin 2. FEBS J 273(14):3248–3260. https://doi.org/10.1111/j.1742-4658.2006.05333.x

    Article  CAS  PubMed  Google Scholar 

  44. Diaz-Nido J, Serrano L, Mendez E, Avila J (1988) A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation. J Cell Biol 106(6):2057–2065

    Article  CAS  PubMed  Google Scholar 

  45. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, Fang B, Fang X, Fang D, Litchfield DW, Aldape K, Lu Z (2009) EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell 36(4):547–559. https://doi.org/10.1016/j.molcel.2009.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong HN, Ward MA, Bell AW, Chevet E, Bains S, Blackstock WP, Solari R, Thomas DY, Bergeron JJ (1998) Conserved in vivo phosphorylation of calnexin at casein kinase II sites as well as a protein kinase C/proline-directed kinase site. J Biol Chem 273(27):17227–17235

    Article  CAS  PubMed  Google Scholar 

  47. Cala SE, Ulbright C, Kelley JS, Jones LR (1993) Purification of a 90-kDa protein (Band VII) from cardiac sarcoplasmic reticulum. Identification as calnexin and localization of casein kinase II phosphorylation sites. J Biol Chem 268(4):2969–2975

    CAS  PubMed  Google Scholar 

  48. Takeda E, Hieda M, Katahira J, Yoneda Y (2005) Phosphorylation of RanGAP1 stabilizes its interaction with Ran and RanBP1. Cell Struct Funct 30(2):69–80

    Article  CAS  PubMed  Google Scholar 

  49. Thoen C, De Herdt E, Slegers H (1986) Identification of the ribosomal proteins phosphorylated by the ribosome-associated casein kinase type II from cryptobiotic gastrulae of the brine shrimp Artemia sp. Biochem Biophys Res Commun 135(2):347–354

    Article  CAS  PubMed  Google Scholar 

  50. Hasler P, Brot N, Weissbach H, Parnassa AP, Elkon KB (1991) Ribosomal proteins P0, P1, and P2 are phosphorylated by casein kinase II at their conserved carboxyl termini. J Biol Chem 266(21):13815–13820

    CAS  PubMed  Google Scholar 

  51. Witters LA, Bacon GW (1985) Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase. Biochem Biophys Res Commun 130(3):1132–1138

    Article  CAS  PubMed  Google Scholar 

  52. Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK (2000) Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem 275(44):34710–34718. https://doi.org/10.1074/jbc.M005179200

    Article  CAS  PubMed  Google Scholar 

  53. Cahill MA (2017) The evolutionary appearance of signaling motifs in PGRMC1. Biosci Trends 11(2):179–192. https://doi.org/10.5582/bst.2017.01009

    Article  PubMed  Google Scholar 

  54. Wang D, Jang DJ (2009) Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells. Cancer Res 69(20):8200–8207. https://doi.org/10.1158/0008-5472.CAN-09-1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC), Grant number IG 18756 (to L.A.P.). C. F. was supported by a Grant from the “Collegio Ghislieri”, Pavia. J.V. was supported by a Grant from the Fondazione per la Ricerca sulla Fibrosi Cistica (Grant #10/2016 adopted by Gruppo di Sostegno FFC di Seregno) (to M.S.). The authors wish to thank the Cassa di Risparmio di Padova e Rovigo (Cariparo) Holding for funding the acquisition of the LTQ-Orbitrap XL mass spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauro Salvi, Giorgio Arrigoni or Lorenzo A. Pinna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2705_MOESM1_ESM.xlsx

Table S1. Table lists all (phospho)peptides identified in the triplex SILAC experiment (both biological replicates) of wild type vs CK2α/α’(-/-) cells. Peptide sequences, confidence level, protein group accession number, modifications, PhosphoRS site probabilities, SILAC ratios, q-values, Mascot scores, expectation values, number of missed cleavages, experimental m/z, Δppm are reported (XLSX 3273 kb)

18_2017_2705_MOESM2_ESM.xlsx

Table S2. Table lists all phosphosites that were reliably quantified in the triplex SILAC experiment (both biological replicates) of wild type vs CK2α/α’(-/-) cells. Peptide sequences, protein group accession number, SILAC ratios, fold change, and protein description are reported (XLSX 69 kb)

18_2017_2705_MOESM3_ESM.xlsx

Table S3. Table lists all (phospho)peptides identified in the triplex SILAC experiment (both biological replicates) of wild type vs CK2β(-/-) cells. Peptide sequences, confidence level, protein group accession number, modifications, PhosphoRS site probabilities, SILAC ratios, q-values, Mascot scores, expectation values, number of missed cleavages, experimental m/z, Δppm are reported (XLSX 2423 kb)

18_2017_2705_MOESM4_ESM.xlsx

Table S4. Table lists all phosphosites that were reliably quantified in the triplex SILAC experiment (both biological replicates) of wild type vs CK2β(-/-) cells. Peptide sequences, protein group accession number, SILAC ratios, fold change, and protein description are reported (XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchin, C., Borgo, C., Cesaro, L. et al. Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells. Cell. Mol. Life Sci. 75, 2011–2026 (2018). https://doi.org/10.1007/s00018-017-2705-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2705-8

Keywords

Navigation