Log in

Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Affinity proteins based on small scaffolds are currently emerging as alternatives to antibodies for therapy. Similarly to antibodies, they can be engineered to have high affinity for specific proteins. A potential problem with small proteins and peptides is their short in vivo circulation time, which might limit the therapeutic efficacy. To circumvent this issue, we have engineered bispecificity into an albumin-binding domain (ABD) derived from streptococcal Protein G. The inherent albumin binding was preserved while the opposite side of the molecule was randomized for selection of high-affinity binders. Here we present novel ABD variants with the ability to bind to the epidermal growth factor receptor 3 (ErbB3). Isolated candidates were shown to have an extraordinary thermal stability and affinity for ErbB3 in the nanomolar range. Importantly, they were also shown to retain their affinity to albumin, hence demonstrating that the intended strategy to engineer bispecific single-domain proteins against a tumor-associated receptor was successful. Moreover, competition assays revealed that the new binders could block the natural ligand Neuregulin-1 from binding to ErbB3, indicating a potential anti-proliferative effect. These new binders thus represent promising candidates for further development into ErbB3-signaling inhibitors, where the albumin interaction could result in prolonged in vivo half-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327. doi:10.1038/nri2744

    Article  PubMed  CAS  Google Scholar 

  2. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287. doi:10.1038/nrc3236

    Article  PubMed  CAS  Google Scholar 

  3. Lofblom J, Frejd FY, Stahl S (2011) Non-immunoglobulin based protein scaffolds. Curr Opin Biotechnol 22(6):843–848. doi:10.1016/j.copbio.2011.06.002

    Article  PubMed  Google Scholar 

  4. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13(3):245–255. doi:10.1016/j.cbpa.2009.04.627

    Article  PubMed  CAS  Google Scholar 

  5. Gilbreth RN, Koide S (2012) Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol 22(4):413–420. doi:10.1016/j.sbi.2012.06.001

    Article  PubMed  CAS  Google Scholar 

  6. Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R, Nagy-Davidescu G, Dreier B, Schibli R, Binz HK, Waibel R, Pluckthun A (2010) Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 70(4):1595–1605. doi:10.1158/0008-5472.CAN-09-2724

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8(10):2861–2871. doi:10.1158/1535-7163.MCT-09-0195

    Article  PubMed  CAS  Google Scholar 

  8. Kontermann RE (2009) Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23(2):93–109. doi:10.2165/00063030-200923020-00003

    Article  PubMed  CAS  Google Scholar 

  9. Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161(2):429–445. doi:10.1016/j.jconrel.2011.11.028

    Article  PubMed  CAS  Google Scholar 

  10. Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S (2006) Perspective–FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27(7):343–348. doi:10.1016/j.it.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  11. Stork R, Campigna E, Robert B, Muller D, Kontermann RE (2009) Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives. J Biol Chem 284(38):25612–25619. doi:10.1074/jbc.M109.027078

    Article  PubMed  CAS  Google Scholar 

  12. Hopp J, Hornig N, Zettlitz KA, Schwarz A, Fuss N, Muller D, Kontermann RE (2010) The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng Des Sel 23(11):827–834. doi:10.1093/protein/gzq058

    Article  PubMed  CAS  Google Scholar 

  13. Hutt M, Farber-Schwarz A, Unverdorben F, Richter F, Kontermann RE (2012) Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem 287(7):4462–4469. doi:10.1074/jbc.M111.311522

    Article  PubMed  CAS  Google Scholar 

  14. Unverdorben F, Färber-Schwarz A, Richter F, Hutt M, Kontermann RE (2012) Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal Protein A. Protein Eng Des Sel 25(2):81–88. doi:10.1093/protein/gzr061

    Article  PubMed  CAS  Google Scholar 

  15. Dennis MS, ** H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67(1):254–261. doi:10.1158/0008-5472.CAN-06-2531

    Article  PubMed  CAS  Google Scholar 

  16. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandstrom M, Rosik D, Carlsson J, Lundqvist H, Wennborg A, Nilsson FY (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67(6):2773–2782. doi:10.1158/0008-5472.CAN-06-1630

    Article  PubMed  CAS  Google Scholar 

  17. Andersen JT, Pehrson R, Tolmachev V, Daba MB, Abrahmsen L, Ekblad C (2011) Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin-binding domain. J Biol Chem 286(7):5234–5241. doi:10.1074/jbc.M110.164848

    Article  PubMed  CAS  Google Scholar 

  18. Wunder A, Stehle G, Schrenk HH, Hartung G, Heene DL, Maier-Borst W, Sinn H (1998) Antitumor activity of methotrexate-albumin conjugates in rats bearing a Walker-256 carcinoma. Int J Cancer 76(6):884–890. doi:10.1002/(sici)1097-0215(19980610)76:6<884:aid-ijc19>3.0.co;2-2

    Article  PubMed  CAS  Google Scholar 

  19. Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G, Maier-Borst W, Heene DL (1997) Plasma protein (albumin) catabolism by the tumor itself-implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 26(2):77–100

    Article  PubMed  CAS  Google Scholar 

  20. Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48(10):2641–2658

    PubMed  CAS  Google Scholar 

  21. Burger AM, Hartung G, Stehle G, Sinn H, Fiebig HH (2001) Pre-clinical evaluation of a methotrexate–albumin conjugate (MTX-HSA) in human tumor xenografts in vivo. Int J Cancer 92(5):718–724

    Article  PubMed  CAS  Google Scholar 

  22. Subramanian GM, Fiscella M, Lamouse-Smith A, Zeuzem S, McHutchison JG (2007) Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol 25(12):1411–1419. doi:10.1038/nbt1364

    Article  PubMed  CAS  Google Scholar 

  23. Metzner HJ, Weimer T, Kronthaler U, Lang W, Schulte S (2009) Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost 102(4):634–644. doi:10.1160/TH09-04-0255

    PubMed  CAS  Google Scholar 

  24. Flisiak R, Flisiak I (2010) Albinterferon-alpha 2b: a new treatment option for hepatitis C. Expert Opin Biol Ther 10(10):1509–1515. doi:10.1517/14712598.2010.521494

    Article  PubMed  CAS  Google Scholar 

  25. Alm T, Yderland L, Nilvebrant J, Halldin A, Hober S (2010) A small bispecific protein selected for orthogonal affinity purification. Biotechnol J 5(6):605–617. doi:10.1002/biot.201000041

    Article  PubMed  CAS  Google Scholar 

  26. Nilvebrant J, Alm T, Hober S, Lofblom J (2011) Engineering bispecificity into a single albumin-binding domain. PLoS ONE 6(10):e25791. doi:10.1371/journal.pone.0025791

    Article  PubMed  CAS  Google Scholar 

  27. Makrides SC, Nygren PA, Andrews B, Ford PJ, Evans KS, Hayman EG, Adari H, Uhlen M, Toth CA (1996) Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor. J Pharmacol Exp Ther 277(1):534–542

    PubMed  CAS  Google Scholar 

  28. Ahmad JN, Li J, Biedermannova L, Kuchar M, Sipova H, Semeradtova A, Cerny J, Petrokova H, Mikulecky P, Polinek J, Stanek O, Vondrasek J, Homola J, Maly J, Osicka R, Sebo P, Maly P (2012) Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of Protein G. Proteins 80(3):774–789. doi:10.1002/prot.23234

    Article  PubMed  CAS  Google Scholar 

  29. Linhult M, Binz HK, Uhlen M, Hober S (2002) Mutational analysis of the interaction between albumin-binding domain from streptococcal Protein G and human serum albumin. Protein Sci 11(2):206–213. doi:10.1110/ps.02802

    Article  PubMed  CAS  Google Scholar 

  30. Kraulis PJ, Jonasson P, Nygren PA, Uhlen M, Jendeberg L, Nilsson B, Kordel J (1996) The serum albumin-binding domain of streptococcal Protein G is a three-helical bundle: a heteronuclear NMR study. FEBS Lett 378(2):190–194

    Article  PubMed  CAS  Google Scholar 

  31. Cramer JF, Nordberg PA, Hajdu J, Lejon S (2007) Crystal structure of a bacterial albumin-binding domain at 1.4 A resolution. FEBS Lett 581(17):3178–3182. doi:10.1016/j.febslet.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  32. Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284(1):54–65

    Article  PubMed  CAS  Google Scholar 

  33. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137. doi:10.1038/35052073

    Article  PubMed  CAS  Google Scholar 

  34. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9(7):463–475. doi:10.1038/nrc2656

    Article  PubMed  CAS  Google Scholar 

  35. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West KA, Leszczyniecka M, Feldhaus MJ, Kudla AJ, Nielsen UB (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3 K axis. Sci Signal 2 (77): ra31 doi: 10.1126/scisignal.2000352

  36. Carlsson J (2012) Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors. Tumor Biol 33(3):653–659. doi:10.1007/s13277-011-0307-x

    Article  CAS  Google Scholar 

  37. Linggi B, Carpenter G (2006) ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. J Biol Chem 281(35):25373–25380. doi:10.1074/jbc.M603998200

    Article  PubMed  CAS  Google Scholar 

  38. Huang X, Gao L, Wang S, McManaman JL, Thor AD, Yang X, Esteva FJ, Liu B (2010) Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-i receptor in breast cancer cells resistant to herceptin. Cancer Res 70(3):1204–1214. doi:10.1158/0008-5472.CAN-09-3321

    Article  PubMed  CAS  Google Scholar 

  39. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, Moasser MM (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445(7126):437–441. doi:10.1038/nature05474

    Article  PubMed  CAS  Google Scholar 

  40. Foreman PK, Gore M, Kobel PA, Xu L, Yee H, Hannum C, Ho H, Wang SM, Tran HV, Horowitz M, Horowitz L, Bhatt RR (2012) ErbB3 inhibitory surrobodies inhibit tumor cell proliferation in vitro and in vivo. Mol Cancer Ther 11(7):1411–1420. doi:10.1158/1535-7163.MCT-12-0068

    Article  PubMed  CAS  Google Scholar 

  41. Grovdal LM, Kim J, Holst MR, Knudsen SL, Grandal MV, van Deurs B (2012) EGF receptor inhibitors increase ErbB3 mRNA and protein levels in breast cancer cells. Cell Signal 24(1):296–301. doi:10.1016/j.cellsig.2011.09.012

    Article  PubMed  CAS  Google Scholar 

  42. Vaught DB, Stanford JC, Young C, Hicks DJ, Wheeler F, Rinehart C, Sanchez V, Koland J, Muller WJ, Arteaga CL, Cook RS (2012) HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res 72(10):2672–2682. doi:10.1158/0008-5472.CAN-11-3594

    Article  PubMed  CAS  Google Scholar 

  43. Amin DN, Sergina N, Lim L, Goga A, Moasser MM (2012) HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Biochem J 447(3):417–425. doi:10.1042/BJ20120724

    Article  PubMed  CAS  Google Scholar 

  44. Ruther U (1982) pUR 250 allows rapid chemical sequencing of both DNA strands of its inserts. Nucleic Acids Res 10(19):5765–5772

    Article  PubMed  CAS  Google Scholar 

  45. Kronqvist N, Malm M, Gostring L, Gunneriusson E, Nilsson M, Hoiden Guthenberg I, Gedda L, Frejd FY, Stahl S, Lofblom J (2011) Combining phage and staphylococcal surface display for generation of ErbB3-specific affibody molecules. Protein Eng Des Sel 24(4):385–396. doi:10.1093/protein/gzq118

    Article  PubMed  CAS  Google Scholar 

  46. Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlen M (1987) A synthetic IgG-binding domain based on staphylococcal Protein A. Protein Eng 1(2):107–113

    Article  PubMed  CAS  Google Scholar 

  47. Johansson MU, Frick IM, Nilsson H, Kraulis PJ, Hober S, Jonasson P, Linhult M, Nygren PA, Uhlen M, Bjorck L, Drakenberg T, Forsen S, Wikstrom M (2002) Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem 277(10):8114–8120. doi:10.1074/jbc.M109943200

    Article  PubMed  CAS  Google Scholar 

  48. Gulich S, Linhult M, Nygren P, Uhlen M, Hober S (2000) Stability towards alkaline conditions can be engineered into a protein ligand. J Biotechnol 80(2):169–178

    Article  PubMed  CAS  Google Scholar 

  49. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161(6):1219–1237. doi:10.1111/j.1476-5381.2009.00604.x

    Article  PubMed  CAS  Google Scholar 

  50. Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Protein Sci 15(1):14–27. doi:10.1110/ps.051817606

    Article  PubMed  CAS  Google Scholar 

  51. Gostring L, Malm M, Hoiden-Guthenberg I, Frejd FY, Stahl S, Lofblom J, Gedda L (2012) Cellular effects of HER3-specific affibody molecules. PLoS ONE 7(6):e40023. doi:10.1371/journal.pone.0040023

    Article  PubMed  Google Scholar 

  52. Lejon S, Frick IM, Bjorck L, Wikstrom M, Svensson S (2004) Crystal structure and biological implications of a bacterial albumin-binding module in complex with human serum albumin. J Biol Chem 279(41):42924–42928. doi:10.1074/jbc.M406957200

    Article  PubMed  CAS  Google Scholar 

  53. Holt LJ, Basran A, Jones K, Chorlton J, Jespers LS, Brewis ND, Tomlinson IM (2008) Anti-serum albumin domain antibodies for extending the half-lives of short-lived drugs. Protein Eng Des Sel 21(5):283–288. doi:10.1093/protein/gzm067

    Article  PubMed  CAS  Google Scholar 

  54. Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277(38):35035–35043. doi:10.1074/jbc.M205854200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council (VR), the Knut and Alice Wallenberg foundation (KAW), and the Royal Swedish Academy of Sciences (KVA). Prof. Per-Åke Nygren is acknowledged for scientific advice and helpful discussion.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Hober.

Additional information

Johan Nilvebrant and Mikael Astrand contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilvebrant, J., Åstrand, M., Löfblom, J. et al. Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cell. Mol. Life Sci. 70, 3973–3985 (2013). https://doi.org/10.1007/s00018-013-1370-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1370-9

Keywords

Navigation