Log in

Genetic determinants of neuronal vulnerability to apoptosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apoptosis is a common mode of cell death that contributes to neuronal loss associated with neurodegeneration. Single-nucleotide polymorphisms (SNPs) in chromosomal DNA are contributing factors dictating natural susceptibility of humans to disease. Here, the most common SNPs affecting neuronal vulnerability to apoptosis are reviewed in the context of neurological disorders. Polymorphic variants in genes encoding apoptotic proteins, either from the extrinsic (FAS, TNF-α, CASP8) or the intrinsic (BAX, BCL2, CASP3, CASP9) pathways could be highly valuable in the diagnosis of neurodegenerative diseases and stroke. Interestingly, the Arg72Pro SNP in TP53, the gene encoding tumor suppressor p53, was recently revealed a biomarker of poor prognosis in stroke due to its ability to modulate neuronal apoptotic death. Search for new SNPs responsible for genetic variability to apoptosis will ensure the implementation of novel diagnostic and prognostic tools, as well as therapeutic strategies against neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AIF:

Apoptosis-inducing factor

ALS:

Amyotrophic lateral sclerosis

Apaf-1:

Adaptor protein apoptotic peptidase-activating factor

APOE ε4:

Apolipoprotein E ε4

Bad:

Bcl-2-associated death promoter

Bak:

Bcl-2 antagonist/killer-1

Bax:

Bcl-2-associated X protein

Bcl-xL:

Bcl-2-like 1

Bcl-2:

B-cell lymphoma-2

BH:

Bcl-2 homology

Bid:

BH3-interacting domain death agonist

Bim:

Bcl-2-interacting mediator of cell death

CASP3:

Caspase-3

CASP8:

Caspase-8

CASP9:

Caspase-9

CNS:

Central nervous system

DISC:

Death-inducing signaling complex

FAF1:

Fas-associated protein 1

FasL:

Fas ligand

HDM2:

Human double minute-2

HLA:

Human leukocyte antigen

LRRK2:

Leucine-rich repeat kinase 2

Mcl-1:

Myeloid cell leukemia-1

MDM2:

Murine double minute-2

MS:

Multiple sclerosis

Noxa:

NADPH oxidase activator 1

OMM:

Outer mitochondrial membrane

PCD:

Programmed cell death

PD:

Parkinson disease

PUMA:

p53-upregulated modulator of apoptosis

SNP:

single-nucleotide polymorphisms

tBid:

Truncated Bid

Sp1:

Stimulatory protein 1

TNF:

Tumor necrosis factor

TRADD:

TNFR-associated death domain protein

References

  1. Levi-Montalcini R (1966) The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect 60:217–259

    PubMed  CAS  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  3. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    PubMed  CAS  Google Scholar 

  4. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    PubMed  CAS  Google Scholar 

  5. Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9:1059–1096

    PubMed  CAS  Google Scholar 

  6. Cavallucci V, D’Amelio M (2011) Matter of life and death: the pharmacological approaches targeting apoptosis in brain diseases. Curr Pharm Des 17:215–229

    PubMed  CAS  Google Scholar 

  7. Zhivotovsky B, Orrenius S (2006) Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 27:1939–1945

    PubMed  CAS  Google Scholar 

  8. Imyanitov EN (2009) Gene polymorphisms, apoptotic capacity and cancer risk. Hum Genet 125:239–246

    PubMed  Google Scholar 

  9. Plun-Favreau H, Lewis PA, Hardy J, Martins LM, Wood NW (2010) Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS Genet 6:1–8

    Google Scholar 

  10. Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14:66–72

    PubMed  CAS  Google Scholar 

  11. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351:41–58

    PubMed  CAS  Google Scholar 

  12. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    PubMed  CAS  Google Scholar 

  13. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    PubMed  CAS  Google Scholar 

  14. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    PubMed  CAS  Google Scholar 

  15. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  16. Billen LP, Shamas-Din A, Andrews DW (2008) Bid: a Bax-like BH3 protein. Oncogene 27(Suppl 1):S93–104

    PubMed  CAS  Google Scholar 

  17. Bolanos JP, Moro MA, Lizasoain I, Almeida A (2009) Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: therapeutic implications. Adv Drug Deliv Rev 61:1299–1315

    PubMed  CAS  Google Scholar 

  18. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    PubMed  CAS  Google Scholar 

  19. Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ (1995) A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14:5589–5596

    PubMed  CAS  Google Scholar 

  20. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    PubMed  CAS  Google Scholar 

  21. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    PubMed  CAS  Google Scholar 

  22. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    PubMed  CAS  Google Scholar 

  23. Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941

    PubMed  CAS  Google Scholar 

  24. Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–1084

    PubMed  CAS  Google Scholar 

  25. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 1813:508–520

    PubMed  CAS  Google Scholar 

  26. Ow YP, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542

    PubMed  CAS  Google Scholar 

  27. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    PubMed  CAS  Google Scholar 

  28. Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    PubMed  CAS  Google Scholar 

  29. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994

    PubMed  CAS  Google Scholar 

  30. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112

    PubMed  CAS  Google Scholar 

  31. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    PubMed  CAS  Google Scholar 

  32. Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43

    PubMed  CAS  Google Scholar 

  33. Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155:1459–1466

    PubMed  CAS  Google Scholar 

  34. Rohn TT, Rissman RA, Davis MC, Kim YE, Cotman CW, Head E (2002) Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiol Dis 11:341–354

    PubMed  CAS  Google Scholar 

  35. Duan SR, Wang JX, Wang J, Xu R, Zhao JK, Wang DS (2010) Ischemia induces endoplasmic reticulum stress and cell apoptosis in human brain. Neurosci Lett 475:132–135

    PubMed  CAS  Google Scholar 

  36. Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, Saksi J, Paetau A, Lindsberg PJ (2009) Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol 118:541–552

    PubMed  CAS  Google Scholar 

  37. Satou T, Cummings BJ, Cotman CW (1995) Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer’s disease brain increases with disease severity. Brain Res 697:35–43

    PubMed  CAS  Google Scholar 

  38. Jarskog LF, Gilmore JH (2000) Developmental expression of Bcl-2 protein in human cortex. Brain Res Dev Brain Res 119:225–230

    PubMed  CAS  Google Scholar 

  39. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:478–500

    PubMed  Google Scholar 

  40. Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Brain Res Rev 44:65–81

    PubMed  CAS  Google Scholar 

  41. Zuliani C, Kleber S, Klussmann S, Wenger T, Kenzelmann M, Schreglmann N, Martinez A, del Rio JA, Soriano E, Vodrazka P, Kuner R, Groene HJ, Herr I, Krammer PH, Martin-Villalba A (2006) Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell Death Differ 13:31–40

    PubMed  CAS  Google Scholar 

  42. Ethell DW, Buhler LA (2003) Fas ligand-mediated apoptosis in degenerative disorders of the brain. J Clin Immunol 23:439–446

    PubMed  CAS  Google Scholar 

  43. Reich A, Spering C, Schulz JB (2008) Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity? Trends Neurosci 31:478–486

    PubMed  CAS  Google Scholar 

  44. Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, Hirt UA, Walczak H, Falk W, Essig M, Edler L, Krammer PH, Martin-Villalba A (2004) Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 10:389–395

    PubMed  CAS  Google Scholar 

  45. Beier CP, Kolbl M, Beier D, Woertgen C, Bogdahn U, Brawanski A (2007) CD95/Fas mediates cognitive improvement after traumatic brain injury. Cell Res 17:732–734

    PubMed  CAS  Google Scholar 

  46. Sabelko-Downes KA, Russell JH, Cross AH (1999) Role of Fas–FasL interactions in the pathogenesis and regulation of autoimmune demyelinating disease. J Neuroimmunol 100:42–52

    PubMed  CAS  Google Scholar 

  47. Hovelmeyer N, Hao Z, Kranidioti K, Kassiotis G, Buch T, Frommer F, von Hoch L, Kramer D, Minichiello L, Kollias G, Lassmann H, Waisman A (2005) Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J Immunol 175:5875–5884

    PubMed  Google Scholar 

  48. Martin-Villalba A, Herr I, Jeremias I, Hahne M, Brandt R, Vogel J, Schenkel J, Herdegen T, Debatin KM (1999) CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 19:3809–3817

    PubMed  CAS  Google Scholar 

  49. Rosenbaum DM, Gupta G, D’Amore J, Singh M, Weidenheim K, Zhang H, Kessler JA (2000) Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J Neurosci Res 61:686–692

    PubMed  CAS  Google Scholar 

  50. Raoul C, Buhler E, Sadeghi C, Jacquier A, Aebischer P, Pettmann B, Henderson CE, Haase G (2006) Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL. Proc Natl Acad Sci USA 103:6007–6012

    PubMed  CAS  Google Scholar 

  51. Su JH, Anderson AJ, Cribbs DH, Tu C, Tong L, Kesslack P, Cotman CW (2003) Fas and Fas ligand are associated with neuritic degeneration in the AD brain and participate in beta-amyloid-induced neuronal death. Neurobiol Dis 12:182–193

    PubMed  CAS  Google Scholar 

  52. Chen Z, Duan RS, Lepecheur M, Paly E, London J, Zhu J (2005) SOD-1 inhibits FAS expression in cortex of APP transgenic mice. Apoptosis 10:499–502

    PubMed  CAS  Google Scholar 

  53. Hartmann A, Mouatt-Prigent A, Faucheux BA, Agid Y, Hirsch EC (2002) FADD: a link between TNF family receptors and caspases in Parkinson’s disease. Neurology 58:308–310

    PubMed  CAS  Google Scholar 

  54. Landau AM, Luk KC, Jones ML, Siegrist-Johnstone R, Young YK, Kouassi E, Rymar VV, Dagher A, Sadikot AF, Desbarats J (2005) Defective Fas expression exacerbates neurotoxicity in a model of Parkinson’s disease. J Exp Med 202:575–581

    PubMed  CAS  Google Scholar 

  55. Gomez-Sintes R, Lucas JJ (2010) NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. J Clin Invest 120:2432–2445

    PubMed  CAS  Google Scholar 

  56. Uesugi M, Nakajima K, Tohyama Y, Kohsaka S, Kurihara T (2006) Nonparticipation of nuclear factor kappa B (NFkappaB) in the signaling cascade of c-Jun N-terminal kinase (JNK)- and p38 mitogen-activated protein kinase (p38MAPK)-dependent tumor necrosis factor alpha (TNFalpha) induction in lipopolysaccharide (LPS)-stimulated microglia. Brain Res 1073–1074:48–59

    PubMed  Google Scholar 

  57. Park KM, Bowers WJ (2010) Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal 22:977–983

    PubMed  CAS  Google Scholar 

  58. Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402

    PubMed  CAS  Google Scholar 

  59. Veglianese P, Lo Coco D, Bao Cutrona M, Magnoni R, Pennacchini D, Pozzi B, Gowing G, Julien JP, Tortarolo M, Bendotti C (2006) Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS. Mol Cell Neurosci 31:218–231

    PubMed  CAS  Google Scholar 

  60. Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G (2008) Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des 14:3574–3589

    PubMed  CAS  Google Scholar 

  61. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238

    PubMed  CAS  Google Scholar 

  62. Schmitz A, Bayer J, Dechamps N, Goldin L, Thomas G (2007) Heritability of susceptibility to ionizing radiation-induced apoptosis of human lymphocyte subpopulations. Int J Radiat Oncol Biol Phys 68:1169–1177

    PubMed  CAS  Google Scholar 

  63. Camplejohn RS, Hodgson S, Carter N, Kato BS, Spector TD (2006) Heritability of DNA-damage-induced apoptosis and its relationship with age in lymphocytes from female twins. Br J Cancer 95:520–524

    PubMed  CAS  Google Scholar 

  64. Finnon P, Robertson N, Dziwura S, Raffy C, Zhang W, Ainsbury L, Kaprio J, Badie C, Bouffler S (2008) Evidence for significant heritability of apoptotic and cell cycle responses to ionising radiation. Hum Genet 123:485–493

    PubMed  Google Scholar 

  65. Junn E, Mouradian MM (2010) MicroRNAs in neurodegenerative disorders. Cell Cycle 9:1717–1721

    PubMed  CAS  Google Scholar 

  66. Lau P, de Strooper B (2010) Dysregulated microRNAs in neurodegenerative disorders. Semin Cell Dev Biol 21:768–773

    PubMed  CAS  Google Scholar 

  67. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47:163–174

    PubMed  CAS  Google Scholar 

  68. Harraz MM, Dawson TM, Dawson VL (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42:127–130

    PubMed  CAS  Google Scholar 

  69. Junn E, Mouradian MM (2011) MicroRNAs in neurodegenerative disorders. Cell Cycle 9:1717–1721

    Google Scholar 

  70. Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290:2303–2304

    PubMed  CAS  Google Scholar 

  71. Myers A, Holmans P, Marshall H, Kwon J, Meyer D, Ramic D, Shears S, Booth J, DeVrieze FW, Crook R, Hamshere M, Abraham R, Tunstall N, Rice F, Carty S, Lillystone S, Kehoe P, Rudrasingham V, Jones L, Lovestone S, Perez-Tur J, Williams J, Owen MJ, Hardy J, Goate AM (2000) Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290:2304–2305

    PubMed  CAS  Google Scholar 

  72. Huang WX, Huang MP, Gomes MA, Hillert J (2000) Apoptosis mediators fasL and TRAIL are upregulated in peripheral blood mononuclear cells in MS. Neurology 55:928–934

    PubMed  CAS  Google Scholar 

  73. Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, Skibola CF, Smith MT, Morgan GJ (2003) Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 63:4327–4330

    PubMed  CAS  Google Scholar 

  74. Feuk L, Prince JA, Breen G, Emahazion T, Carothers A, St Clair D, Brookes AJ (2000) Apolipoprotein-E dependent role for the FAS receptor in early onset Alzheimer’s disease: finding of a positive association for a polymorphism in the TNFRSF6 gene. Hum Genet 107:391–396

    PubMed  CAS  Google Scholar 

  75. Feuk L, Prince JA, Blennow K, Brookes AJ (2003) Further evidence for role of a promoter variant in the TNFRSF6 gene in Alzheimer disease. Hum Mutat 21:53–60

    PubMed  CAS  Google Scholar 

  76. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    PubMed  CAS  Google Scholar 

  77. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472

    PubMed  CAS  Google Scholar 

  78. Theuns J, Feuk L, Dermaut B, Del-Favero J, Roks G, Van den Bossche D, Corsmit E, Van den Broeck M, van Duijn CM, Cruts M, Brookes AJ, Van Broeckhoven C (2001) The TNFRSF6 gene is not implicated in familial early-onset Alzheimer’s disease. Hum Genet 108:552–553

    PubMed  CAS  Google Scholar 

  79. He XM, Zhang ZX, Zhang JW, Zhou YT, Tang MN, Wu CB, Hong Z (2006) The Fas gene A-670G polymorphism is not associated with sporadic Alzheimer disease in a Chinese Han population. Brain Res 1082:192–195

    PubMed  CAS  Google Scholar 

  80. van Veen T, Kalkers NF, Crusius JB, van Winsen L, Barkhof F, Jongen PJ, Pena AS, Polman CH, Uitdehaag BM (2002) The FAS-670 polymorphism influences susceptibility to multiple sclerosis. J Neuroimmunol 128:95–100

    PubMed  Google Scholar 

  81. Kantarci OH, Hebrink DD, Achenbach SJ, Atkinson EJ, de Andrade M, McMurray CT, Weinshenker BG (2004) CD95 polymorphisms are associated with susceptibility to MS in women. A population-based study of CD95 and CD95L in MS. J Neuroimmunol 146:162–170

    PubMed  CAS  Google Scholar 

  82. Niino M, Kikuchi S, Fukazawa T, Miyagishi R, Yabe I, Tashiro K (2002) An examination of the Apo-1/Fas promoter Mva I polymorphism in Japanese patients with multiple sclerosis. BMC Neurol 2:8

    PubMed  Google Scholar 

  83. Chiappelli M, Nasi M, Cossarizza A, Porcellini E, Tumini E, Pinti M, Troiano L, Franceschi M, Licastro F (2006) Polymorphisms of fas gene: relationship with Alzheimer’s disease and cognitive decline. Dement Geriatr Cogn Disord 22:296–300

    PubMed  CAS  Google Scholar 

  84. Erten-Lyons D, Jacobson A, Kramer P, Grupe A, Kaye J (2010) The FAS gene, brain volume, and disease progression in Alzheimer’s disease. Alzheimers Dement 6:118–124

    PubMed  CAS  Google Scholar 

  85. Chu K, Niu X, Williams LT (1995) A Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis. Proc Natl Acad Sci USA 92:11894–11898

    PubMed  CAS  Google Scholar 

  86. De Zio D, Ferraro E, D’Amelio M, Simoni V, Bordi M, Soroldoni D, Berghella L, Meyer BI, Cecconi F (2008) Faf1 is expressed during neurodevelopment and is involved in Apaf1-dependent caspase-3 activation in proneural cells. Cell Mol Life Sci 65:1780–1790

    PubMed  CAS  Google Scholar 

  87. Hicks AA, Petursson H, Jonsson T, Stefansson H, Johannsdottir HS, Sainz J, Frigge ML, Kong A, Gulcher JR, Stefansson K, Sveinbjornsdottir S (2002) A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann Neurol 52:549–555

    PubMed  CAS  Google Scholar 

  88. Betarbet R, Anderson LR, Gearing M, Hodges TR, Fritz JJ, Lah JJ, Levey AI (2008) Fas-associated factor 1 and Parkinson’s disease. Neurobiol Dis 31:309–315

    PubMed  CAS  Google Scholar 

  89. Menges CW, Altomare DA, Testa JR (2009) FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis. Cell Cycle 8:2528–2534

    PubMed  CAS  Google Scholar 

  90. Weersma RK, Stokkers PC, Cleynen I, Wolfkamp SC, Henckaerts L, Schreiber S, Dijkstra G, Franke A, Nolte IM, Rutgeerts P, Wijmenga C, Vermeire S (2009) Confirmation of multiple Crohn’s disease susceptibility loci in a large Dutch–Belgian cohort. Am J Gastroenterol 104:630–638

    PubMed  CAS  Google Scholar 

  91. Neta G, Brenner AV, Sturgis EM, Pfeiffer RM, Hutchinson AA, Aschebrook-Kilfoy B, Yeager M, Xu L, Wheeler W, Abend M, Ron E, Tucker MA, Chanock SJ, Sigurdson AJ (2011) Common genetic variants related to genomic integrity and risk of papillary thyroid cancer. Carcinogenesis 32:1231–1237

    PubMed  CAS  Google Scholar 

  92. Berwick DC, Harvey K (2011) LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol 21:257–265

    PubMed  CAS  Google Scholar 

  93. Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT (2009) The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 29:1011–1016

    PubMed  CAS  Google Scholar 

  94. Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ, Ahmad R, Miller DW, Kesavapany S, Singleton A, Lees A, Harvey RJ, Harvey K, Cookson MR (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23:329–341

    PubMed  CAS  Google Scholar 

  95. Liu Z, Hamamichi S, Lee BD, Yang D, Ray A, Caldwell GA, Caldwell KA, Dawson TM, Smith WW, Dawson VL (2011) Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Hum Mol Genet 20:3933–3942

    PubMed  CAS  Google Scholar 

  96. Lesage S, Durr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, Pollak P, Brice A (2006) LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 354:422–423

    PubMed  CAS  Google Scholar 

  97. Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB (2006) LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 354:424–425

    PubMed  CAS  Google Scholar 

  98. Sierra M, Gonzalez-Aramburu I, Sanchez-Juan P, Sanchez-Quintana C, Polo JM, Berciano J, Combarros O, Infante J (2011) High frequency and reduced penetrance of lRRK2 g2019S mutation among Parkinson’s disease patients in Cantabria (Spain). Mov Disord 26:2343–2346

    PubMed  Google Scholar 

  99. Kubota T, McNamara DM, Wang JJ, Trost M, McTiernan CF, Mann DL, Feldman AM (1998) Effects of tumor necrosis factor gene polymorphisms on patients with congestive heart failure. VEST Investigators for TNF Genotype Analysis. Vesnarinone Survival Trial. Circulation 97:2499–2501

    PubMed  CAS  Google Scholar 

  100. Bayley JP, Ottenhoff TH, Verweij CL (2004) Is there a future for TNF promoter polymorphisms? Genes Immun 5:315–329

    PubMed  CAS  Google Scholar 

  101. Higuchi T, Seki N, Kamizono S, Yamada A, Kimura A, Kato H, Itoh K (1998) Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 51:605–612

    PubMed  CAS  Google Scholar 

  102. Skoog T, van’t Hooft FM, Kallin B, Jovinge S, Boquist S, Nilsson J, Eriksson P, Hamsten A (1999) A common functional polymorphism (C–A substitution at position −863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha. Hum Mol Genet 8:1443–1449

    PubMed  CAS  Google Scholar 

  103. Tarkowski E, Liljeroth AM, Nilsson A, Ricksten A, Davidsson P, Minthon L, Blennow K (2000) TNF gene polymorphism and its relation to intracerebral production of TNFalpha and TNFbeta in AD. Neurology 54:2077–2081

    PubMed  CAS  Google Scholar 

  104. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. Faseb J 13:63–68

    PubMed  CAS  Google Scholar 

  105. Di Bona D, Candore G, Franceschi C, Licastro F, Colonna-Romano G, Camma C, Lio D, Caruso C (2009) Systematic review by meta-analyses on the possible role of TNF-alpha polymorphisms in association with Alzheimer’s disease. Brain Res Rev 61:60–68

    PubMed  Google Scholar 

  106. McCusker SM, Curran MD, Dynan KB, McCullagh CD, Urquhart DD, Middleton D, Patterson CC, McIlroy SP, Passmore AP (2001) Association between polymorphism in regulatory region of gene encoding tumour necrosis factor alpha and risk of Alzheimer’s disease and vascular dementia: a case–control study. Lancet 357:436–439

    PubMed  CAS  Google Scholar 

  107. Alvarez V, Mata IF, Gonzalez P, Lahoz CH, Martinez C, Pena J, Guisasola LM, Coto E (2002) Association between the TNFalpha-308 A/G polymorphism and the onset-age of Alzheimer disease. Am J Med Genet 114:574–577

    PubMed  Google Scholar 

  108. Candore G, Balistreri CR, Colonna-Romano G, Lio D, Caruso C (2004) Major histocompatibility complex and sporadic Alzheimer’s disease: a critical reappraisal. Exp Gerontol 39:645–652

    PubMed  CAS  Google Scholar 

  109. Lio D, Annoni G, Licastro F, Crivello A, Forte GI, Scola L, Colonna-Romano G, Candore G, Arosio B, Galimberti L, Vergani C, Caruso C (2006) Tumor necrosis factor-alpha −308A/G polymorphism is associated with age at onset of Alzheimer’s disease. Mech Ageing Dev 127:567–571

    PubMed  CAS  Google Scholar 

  110. Yang L, Lu R, Jiang L, Liu Z, Peng Y (2009) Expression and genetic analysis of tumor necrosis factor-alpha (TNF-alpha) G −308A polymorphism in sporadic Alzheimer’s disease in a Southern China population. Brain Res 1247:178–181

    PubMed  CAS  Google Scholar 

  111. Laws SM, Perneczky R, Wagenpfeil S, Muller U, Forstl H, Martins RN, Kurz A, Riemenschneider M (2005) TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Hum Mutat 26:29–35

    PubMed  CAS  Google Scholar 

  112. Tedde A, Putignano AL, Nacmias B, Bagnoli S, Cellini E, Sorbi S (2008) Lack of association between TNF-alpha polymorphisms and Alzheimer’s disease in an Italian cohort. Neurosci Lett 446:139–142

    PubMed  CAS  Google Scholar 

  113. Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW (1993) An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med 177:557–560

    PubMed  CAS  Google Scholar 

  114. Candore G, Lio D, Romano GC, Caruso C (2002) Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun Rev 1:29–35

    PubMed  CAS  Google Scholar 

  115. Bruunsgaard H, Benfield TL, Andersen-Ranberg K, Hjelmborg JB, Pedersen AN, Schroll M, Pedersen BK, Jeune B (2004) The tumor necrosis factor alpha −308G > A polymorphism is associated with dementia in the oldest old. J Am Geriatr Soc 52:1361–1366

    PubMed  Google Scholar 

  116. Qidwai T, Khan F (2011) Tumour necrosis factor gene polymorphism and disease prevalence. Scand J Immunol 74:522–547

    PubMed  CAS  Google Scholar 

  117. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    PubMed  CAS  Google Scholar 

  118. Infante J, Garcia-Gorostiaga I, Sanchez-Juan P, Sanchez-Quintana C, Gurpegui JL, Rodriguez-Rodriguez E, Mateo I, Berciano J, Combarros O (2008) Inflammation-related genes and the risk of Parkinson’s disease: a multilocus approach. Eur J Neurol 15:431–433

    PubMed  CAS  Google Scholar 

  119. Bialecka M, Klodowska-Duda G, Kurzawski M, Slawek J, Gorzkowska A, Opala G, Bialecki P, Sagan L, Drozdzik M (2008) Interleukin-10 (IL10) and tumor necrosis factor alpha (TNF) gene polymorphisms in Parkinson’s disease patients. Parkinsonism Relat Disord 14:636–640

    PubMed  CAS  Google Scholar 

  120. Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kaji R, Kuno S (2001) Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson’s disease. Neurosci Lett 311:1–4

    PubMed  CAS  Google Scholar 

  121. Um JY, Kim HM (2004) Tumor necrosis factor alpha gene polymorphism is associated with cerebral infarction. Brain Res Mol Brain Res 122:99–102

    PubMed  CAS  Google Scholar 

  122. Rubattu S, Speranza R, Ferrari M, Evangelista A, Beccia M, Stanzione R, Assenza GE, Volpe M, Rasura M (2005) A role of TNF-alpha gene variant on juvenile ischemic stroke: a case–control study. Eur J Neurol 12:989–993

    PubMed  CAS  Google Scholar 

  123. Harcos P, Laki J, Kiszel P, Szeplaki Z, Szolnoki Z, Kovacs M, Melegh B, Szeplaki G, Fust G, Blasko B (2006) Decreased frequency of the TNF2 allele of TNF-alpha −308 promoter polymorphism is associated with lacunar infarction. Cytokine 33:100–105

    PubMed  CAS  Google Scholar 

  124. Lalouschek W, Schillinger M, Hsieh K, Endler G, Greisenegger S, Marculescu R, Lang W, Wagner O, Cheng S, Mannhalter C (2006) Polymorphisms of the inflammatory system and risk of ischemic cerebrovascular events. Clin Chem Lab Med 44:918–923

    PubMed  CAS  Google Scholar 

  125. Hoppe C, Klitz W, D’Harlingue K, Cheng S, Grow M, Steiner L, Noble J, Adams R, Styles L (2007) Confirmation of an association between the TNF(−308) promoter polymorphism and stroke risk in children with sickle cell anemia. Stroke 38:2241–2246

    PubMed  CAS  Google Scholar 

  126. Lee BC, Ahn SY, Doo HK, Yim SV, Lee HJ, ** SY, Hong SJ, Lee SH, Kim SD, Seo JC, Leem KH, Chung JH (2004) Susceptibility for ischemic stroke in Korean population is associated with polymorphisms of the interleukin-1 receptor antagonist and tumor necrosis factor-alpha genes, but not the interleukin-1beta gene. Neurosci Lett 357:33–36

    PubMed  CAS  Google Scholar 

  127. Kim OJ, Lee JH, Choi JK, Oh SH, Hong SH, Oh D, Kim NK (2010) Association between tumor necrosis factor-alpha (−308G–A and −238G–A) polymorphisms and homocysteine levels in patients with ischemic strokes and silent brain infarctions. Cerebrovasc Dis 30:483–490

    PubMed  CAS  Google Scholar 

  128. Karahan ZC, Deda G, Sipahi T, Elhan AH, Akar N (2005) TNF-alpha −308G/A and IL-6 −174 G/C polymorphisms in the Turkish pediatric stroke patients. Thromb Res 115:393–398

    PubMed  CAS  Google Scholar 

  129. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8:1006–1016

    PubMed  CAS  Google Scholar 

  130. Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, Guo Y, Yang M, Zhang X, Zhang Q, Zeng C, Lin D (2007) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39:605–613

    PubMed  CAS  Google Scholar 

  131. Hartmann A, Troadec JD, Hunot S, Kikly K, Faucheux BA, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21:2247–2255

    PubMed  CAS  Google Scholar 

  132. MacPherson G, Healey CS, Teare MD, Balasubramanian SP, Reed MW, Pharoah PD, Ponder BA, Meuth M, Bhattacharyya NP, Cox A (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96:1866–1869

    PubMed  CAS  Google Scholar 

  133. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S, Lissowska J, Brinton L, Peplonska B, Southey MC, Hopper JL, McCredie MR, Giles GG, Fletcher O, Johnson N, dos Santos Silva I, Gibson L, Bojesen SE, Nordestgaard BG, Axelsson CK, Torres D, Hamann U, Justenhoven C, Brauch H, Chang-Claude J, Kropp S, Risch A, Wang-Gohrke S, Schurmann P, Bogdanova N, Dork T, Fagerholm R, Aaltonen K, Blomqvist C, Nevanlinna H, Seal S, Renwick A, Stratton MR, Rahman N, Sangrajrang S, Hughes D, Odefrey F, Brennan P, Spurdle AB, Chenevix-Trench G, Beesley J, Mannermaa A, Hartikainen J, Kataja V, Kosma VM, Couch FJ, Olson JE, Goode EL, Broeks A, Schmidt MK, Hogervorst FB, Van’t Veer LJ, Kang D, Yoo KY, Noh DY, Ahn SH, Wedren S, Hall P, Low YL, Liu J, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Sigurdson AJ, Stredrick DL, Alexander BH, Struewing JP, Pharoah PD, Easton DF (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    PubMed  CAS  Google Scholar 

  134. Wang M, Zhang Z, Tian Y, Shao J, Zhang Z (2009) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter associated with risk and progression of bladder cancer. Clin Cancer Res 15:2567–2572

    PubMed  CAS  Google Scholar 

  135. Ma X, Zhang J, Liu S, Huang Y, Chen B, Wang D (2011) Polymorphisms in the CASP8 gene and the risk of epithelial ovarian cancer. Gynecol Oncol 122:554–559

    PubMed  CAS  Google Scholar 

  136. Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18:1441–1449

    PubMed  CAS  Google Scholar 

  137. Goertsches R, Villoslada P, Comabella M, Montalban X, Navarro A, de la Concha EG, Arroyo R, Lopez de Munain A, Otaegui D, Palacios R, Perez-Tur J, Jonasdottir A, Benediktsson K, Fossdal R, Sawcer S, Setakis E, Compston A (2003) A genomic screen of Spanish multiple sclerosis patients reveals multiple loci associated with the disease. J Neuroimmunol 143:124–128

    PubMed  CAS  Google Scholar 

  138. Comabella M, Martin R (2007) Genomics in multiple sclerosis—current state and future directions. J Neuroimmunol 187:1–8

    PubMed  CAS  Google Scholar 

  139. Camina-Tato M, Fernandez M, Morcillo-Suarez C, Navarro A, Julia E, Edo MC, Montalban X, Comabella M (2010) Genetic association of CASP8 polymorphisms with primary progressive multiple sclerosis. J Neuroimmunol 222:70–75

    PubMed  CAS  Google Scholar 

  140. Sand PG (2011) CASP8 in MS. J Neuroimmunol 230:192

    PubMed  CAS  Google Scholar 

  141. Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, Kim CH, Kang YM, Lee WK, Kam S, Park RW, Kim IS, Lee JT, Jung TH (2006) Caspase 9 promoter polymorphisms and risk of primary lung cancer. Hum Mol Genet 15:1963–1971

    PubMed  CAS  Google Scholar 

  142. Wang H, Liu H, Zheng ZM, Zhang KB, Wang TP, Sribastav SS, Liu WS, Liu T (2011) Role of death receptor, mitochondrial and endoplasmic reticulum pathways in different stages of degenerative human lumbar disc. Apoptosis 16:990–1003

    PubMed  CAS  Google Scholar 

  143. Guo TM, Liu M, Zhang YG, Guo WT, Wu SX (2011) Association between caspase-9 promoter region polymorphisms and discogenic low back pain. Connect Tissue Res 52:133–138

    PubMed  CAS  Google Scholar 

  144. Jang JS, Kim KM, Choi JE, Cha SI, Kim CH, Lee WK, Kam S, Jung TH, Park JY (2008) Identification of polymorphisms in the caspase-3 gene and their association with lung cancer risk. Mol Carcinog 47:383–390

    PubMed  CAS  Google Scholar 

  145. Lee SY, Choi YY, Choi JE, Kim MJ, Kim JS, Jung DK, Kang HG, Jeon HS, Lee WK, ** G, Cha SI, Kim CH, Jung TH, Park JY (2010) Polymorphisms in the caspase genes and the risk of lung cancer. J Thorac Oncol 5:1152–1158

    PubMed  Google Scholar 

  146. Young RL, Korsmeyer SJ (1993) A negative regulatory element in the bcl-2 5′-untranslated region inhibits expression from an upstream promoter. Mol Cell Biol 13:3686–3697

    PubMed  CAS  Google Scholar 

  147. Nuckel H, Frey UH, Bau M, Sellmann L, Stanelle J, Durig J, Jockel KH, Duhrsen U, Siffert W (2007) Association of a novel regulatory polymorphism (−938C > A) in the BCL2 gene promoter with disease progression and survival in chronic lymphocytic leukemia. Blood 109:290–297

    PubMed  Google Scholar 

  148. Salvadore G, Nugent AC, Chen G, Akula N, Yuan P, Cannon DM, Zarate CA Jr, McMahon FJ, Manji HK, Drevets WC (2009) Bcl-2 polymorphism influences gray matter volume in the ventral striatum in healthy humans. Biol Psychiatry 66:804–807

    PubMed  CAS  Google Scholar 

  149. Machado-Vieira R, Pivovarova NB, Stanika RI, Yuan P, Wang Y, Zhou R, Zarate CA Jr, Drevets WC, Brantner CA, Baum A, Laje G, McMahon FJ, Chen G, Du J, Manji HK, Andrews SB (2011) The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry 69:344–352

    PubMed  CAS  Google Scholar 

  150. Semaan SJ, Li Y, Nickells RW (2010) A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death. ASN Neuro 2:87–101

    CAS  Google Scholar 

  151. Saxena A, Moshynska O, Sankaran K, Viswanathan S, Sheridan DP (2002) Association of a novel single nucleotide polymorphism, G(−248)A, in the 5′-UTR of BAX gene in chronic lymphocytic leukemia with disease progression and treatment resistance. Cancer Lett 187:199–205

    PubMed  CAS  Google Scholar 

  152. Starczynski J, Pepper C, Pratt G, Hooper L, Thomas A, Milligan D, Bentley P, Fegan C (2005) Common polymorphism G(−248)A in the promoter region of the bax gene results in significantly shorter survival in patients with chronic lymphocytic leukemia once treatment is initiated. J Clin Oncol 23:1514–1521

    PubMed  CAS  Google Scholar 

  153. Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17:401–411

    PubMed  CAS  Google Scholar 

  154. White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18:1428–1439

    PubMed  CAS  Google Scholar 

  155. Uo T, Kinoshita Y, Morrison RS (2005) Neurons exclusively express N-Bak, a BH3 domain-only Bak isoform that promotes neuronal apoptosis. J Biol Chem 280:9065–9073

    PubMed  CAS  Google Scholar 

  156. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    PubMed  CAS  Google Scholar 

  157. Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14:887–891

    PubMed  CAS  Google Scholar 

  158. Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L, and Gautam S (1994) p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25:849–855 (discussion 855–846)

    Google Scholar 

  159. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH (2005) Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin–proteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab 25:267–280

    PubMed  CAS  Google Scholar 

  160. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983

    PubMed  CAS  Google Scholar 

  161. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342

    PubMed  CAS  Google Scholar 

  162. Mitsios N, Gaffney J, Krupinski J, Mathias R, Wang Q, Hayward S, Rubio F, Kumar P, Kumar S, Slevin M (2007) Expression of signaling molecules associated with apoptosis in human ischemic stroke tissue. Cell Biochem Biophys 47:73–86

    PubMed  CAS  Google Scholar 

  163. LaFerla FM, Hall CK, Ngo L, Jay G (1996) Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 98:1626–1632

    PubMed  CAS  Google Scholar 

  164. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232:418–421

    PubMed  CAS  Google Scholar 

  165. Castro RE, Santos MM, Gloria PM, Ribeiro CJ, Ferreira DM, Xavier JM, Moreira R, Rodrigues CM (2010) Cell death targets and potential modulators in Alzheimer’s disease. Curr Pharm Des 16:2851–2864

    PubMed  CAS  Google Scholar 

  166. da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, Safe S, Abou-Sleiman PM, Wood NW, Takahashi H, Goldberg MS, Shen J, Checler F (2009) Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat Cell Biol 11:1370–1375

    PubMed  Google Scholar 

  167. Alves da Costa C, Checler F (2011) Apoptosis in Parkinson’s disease: is p53 the missing link between genetic and sporadic Parkinsonism? Cell Signal 23:963–968

    PubMed  CAS  Google Scholar 

  168. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777

    PubMed  CAS  Google Scholar 

  169. Soussi T (2000) The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 910:121–137 (discussion 137–129)

    Google Scholar 

  170. Kruse JP, Gu W (2008) SnapShot: p53 posttranslational modifications. Cell 133(930–930):e931

    Google Scholar 

  171. Michael D, Oren M (2003) The p53–Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    PubMed  CAS  Google Scholar 

  172. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    PubMed  CAS  Google Scholar 

  173. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12:439–452

    PubMed  CAS  Google Scholar 

  174. Hu Z, ** G, Wang L, Chen F, Wang X, Shen H (2007) MDM2 promoter polymorphism SNP309 contributes to tumor susceptibility: evidence from 21 case–control studies. Cancer Epidemiol Biomarkers Prev 16:2717–2723

    PubMed  CAS  Google Scholar 

  175. Marine JC, Jochemsen AG (2004) Mdmx and Mdm2: brothers in arms? Cell Cycle 3:900–904

    PubMed  CAS  Google Scholar 

  176. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10:1098–1105

    PubMed  CAS  Google Scholar 

  177. Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    PubMed  CAS  Google Scholar 

  178. Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:714–723

    PubMed  CAS  Google Scholar 

  179. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4:842–849

    PubMed  CAS  Google Scholar 

  180. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    PubMed  CAS  Google Scholar 

  181. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    PubMed  CAS  Google Scholar 

  182. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69

    PubMed  CAS  Google Scholar 

  183. Chipuk JE, Green DR (2003) p53’s believe it or not: lessons on transcription-independent death. J Clin Immunol 23:355–361

    PubMed  CAS  Google Scholar 

  184. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    PubMed  CAS  Google Scholar 

  185. Gomez-Sanchez JC, Delgado-Esteban M, Rodriguez-Hernandez I, Sobrino T, Perez de la Ossa N, Reverte S, Bolanos JP, Gonzalez-Sarmiento R, Castillo J, Almeida A (2011) The human Tp53 Arg72Pro polymorphism explains different functional prognosis in stroke. J Exp Med 208:429–437

    PubMed  CAS  Google Scholar 

  186. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    PubMed  CAS  Google Scholar 

  187. Hong LZ, Zhao XY, Zhang HL (2010) p53-mediated neuronal cell death in ischemic brain injury. Neurosci Bull 26:232–240

    PubMed  CAS  Google Scholar 

  188. Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10:481–494

    PubMed  CAS  Google Scholar 

  189. Napieralski JA, Raghupathi R, McIntosh TK (1999) The tumor-suppressor gene, p53, is induced in injured brain regions following experimental traumatic brain injury. Brain Res Mol Brain Res 71:78–86

    PubMed  CAS  Google Scholar 

  190. Ng I, Yeo TT, Tang WY, Soong R, Ng PY, Smith DR (2000) Apoptosis occurs after cerebral contusions in humans. Neurosurgery 46:949–956

    PubMed  CAS  Google Scholar 

  191. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    PubMed  Google Scholar 

  192. Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220–228

    PubMed  CAS  Google Scholar 

  193. Luo Y, Kuo CC, Shen H, Chou J, Greig NH, Hoffer BJ, Wang Y (2009) Delayed treatment with a p53 inhibitor enhances recovery in stroke brain. Ann Neurol 65:520–530

    PubMed  CAS  Google Scholar 

  194. Yonekura I, Takai K, Asai A, Kawahara N, Kirino T (2006) p53 potentiates hippocampal neuronal death caused by global ischemia. J Cereb Blood Flow Metab 26:1332–1340

    PubMed  CAS  Google Scholar 

  195. Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM (2002) A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced Parkinsonism. J Neurochem 83:186–192

    PubMed  CAS  Google Scholar 

  196. Nair VD (2006) Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson’s disease. Apoptosis 11:955–966

    PubMed  CAS  Google Scholar 

  197. de la Monte SM, Sohn YK, Wands JR (1997) Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152:73–83

    PubMed  Google Scholar 

  198. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    PubMed  CAS  Google Scholar 

  199. Trimmer PA, Smith TS, Jung AB, Bennett JP Jr (1996) Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 5:233–239

    PubMed  CAS  Google Scholar 

  200. Lazar V, Hazard F, Bertin F, Janin N, Bellet D, Bressac B (1993) Simple sequence repeat polymorphism within the p53 gene. Oncogene 8:1703–1705

    PubMed  CAS  Google Scholar 

  201. Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93:15335–15340

    PubMed  CAS  Google Scholar 

  202. Sakamuro D, Sabbatini P, White E, Prendergast GC (1997) The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15:887–898

    PubMed  CAS  Google Scholar 

  203. Pietsch EC, Humbey O, Murphy ME (2006) Polymorphisms in the p53 pathway. Oncogene 25:1602–1611

    PubMed  CAS  Google Scholar 

  204. Harris N, Brill E, Shohat O, Prokocimer M, Wolf D, Arai N, Rotter V (1986) Molecular basis for heterogeneity of the human p53 protein. Mol Cell Biol 6:4650–4656

    PubMed  CAS  Google Scholar 

  205. Buchman VL, Chumakov PM, Ninkina NN, Samarina OP, Georgiev GP (1988) A variation in the structure of the protein-coding region of the human p53 gene. Gene 70:245–252

    PubMed  CAS  Google Scholar 

  206. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19:1092–1100

    PubMed  CAS  Google Scholar 

  207. Beckman G, Birgander R, Sjalander A, Saha N, Holmberg PA, Kivela A, Beckman L (1994) Is p53 polymorphism maintained by natural selection? Hum Hered 44:266–270

    PubMed  CAS  Google Scholar 

  208. Biros E, Kohut A, Biros I, Kalina I, Bogyiova E, Stubna J (2002) A link between the p53 germ line polymorphisms and white blood cells apoptosis in lung cancer patients. Lung Cancer 35:231–235

    PubMed  Google Scholar 

  209. Dumont P, Leu JI, Della Pietra AC III, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365

    PubMed  CAS  Google Scholar 

  210. Bonafe M, Salvioli S, Barbi C, Trapassi C, Tocco F, Storci G, Invidia L, Vannini I, Rossi M, Marzi E, Mishto M, Capri M, Olivieri F, Antonicelli R, Memo M, Uberti D, Nacmias B, Sorbi S, Monti D, Franceschi C (2004) The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death Differ 11:962–973

    PubMed  CAS  Google Scholar 

  211. Sullivan A, Syed N, Gasco M, Bergamaschi D, Trigiante G, Attard M, Hiller L, Farrell PJ, Smith P, Lu X, Crook T (2004) Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23:3328–3337

    PubMed  CAS  Google Scholar 

  212. Martinez-Lucas P, Moreno-Cuesta J, Garcia-Olmo DC, Sanchez-Sanchez F, Escribano-Martinez J, del Pozo AC, Lizan-Garcia M, Garcia-Olmo D (2005) Relationship between the Arg72Pro polymorphism of p53 and outcome for patients with traumatic brain injury. Intensive Care Med 31:1168–1173

    PubMed  Google Scholar 

  213. Rosenmann H, Meiner Z, Kahana E, Aladjem Z, Friedman G, Ben-Yehuda A, Grenader T, Wertman E, Abramsky O (2003) An association study of the codon 72 polymorphism in the pro-apoptotic gene p53 and Alzheimer’s disease. Neurosci Lett 340:29–32

    PubMed  CAS  Google Scholar 

  214. Chattopadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP (2005) Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neurosci Lett 374:81–86

    PubMed  CAS  Google Scholar 

  215. Arning L, Kraus PH, Saft C, Andrich J, Epplen JT (2005) Age at onset of Huntington disease is not modulated by the R72P variation in TP53 and the R196K variation in the gene coding for the human caspase activated DNase (hCAD). BMC Med Genet 6:35

    PubMed  Google Scholar 

  216. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    PubMed  CAS  Google Scholar 

  217. Dharel N, Kato N, Muroyama R, Moriyama M, Shao RX, Kawabe T, Omata M (2006) MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res 12:4867–4871

    PubMed  CAS  Google Scholar 

  218. Knappskog S, Bjornslett M, Myklebust LM, Huijts PE, Vreeswijk MP, Edvardsen H, Guo Y, Zhang X, Yang M, Ylisaukko-Oja SK, Alhopuro P, Arola J, Tollenaar RA, van Asperen CJ, Seynaeve C, Staalesen V, Chrisanthar R, Lokkevik E, Salvesen HB, Evans DG, Newman WG, Lin D, Aaltonen LA, Borresen-Dale AL, Tell GS, Stoltenberg C, Romundstad P, Hveem K, Lillehaug JR, Vatten L, Devilee P, Dorum A, Lonning PE (2011) The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell 19:273–282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FEDER (European regional development fund), Instituto de Salud Carlos III (PS09/0366 and RD06/0026/1008) and Junta de Castilla y León (GREX206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, A. Genetic determinants of neuronal vulnerability to apoptosis. Cell. Mol. Life Sci. 70, 71–88 (2013). https://doi.org/10.1007/s00018-012-1029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1029-y

Keywords

Navigation