Log in

Riesz and pre-Riesz monoids

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Call a directed partially ordered cancellative divisibility monoid M a Riesz monoid if for all \(x,y_{1},y_{2}\ge 0\) in M\(x\le y_{1}+y_{2}\Rightarrow x=x_{1}+x_{2}\) where \(0\le x_{i}\le y_{i}\). We explore the necessary and sufficient conditions under which a Riesz monoid M with \(M^{+}=\{x\ge 0\mid x\in M\}=M\) generates a Riesz group and indicate some applications. We call a directed p.o. monoid M \(\Pi \)-pre-Riesz if \( M^{+}=M\) and for all \(x_{1},x_{2}, \dots ,x_{n}\in M\), \({{\,\mathrm{glb}\,}}(x_{1},x_{2},\dots ,x_{n})=0\) or there is \(r\in \Pi \) such that \(0<r\le x_{1},x_{2},\dots ,x_{n},\) for some subset \(\Pi \) of M. We explore examples of \(\Pi \)-pre-Riesz monoids of \(*\)-ideals of different types. We show for instance that if M is the monoid of nonzero (integral) ideals of a Noetherian domain D and \(\Pi \) the set of invertible ideals, M is \(\Pi \)-pre-Riesz if and only D is a Dedekind domain. We also study factorization in pre-Riesz monoids of a certain type and link it with factorization theory of ideals in an integral domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.D.: \(\pi \)-domains, overrings and divisorial ideals. Glasgow Math. J. 19(2), 199–203 (1978)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D.D, Chang, G.W., Zafrullah, M.: Nagata-like theorems for integral domains of finite character and finite \(t\)-character. J. Algebra Appl.14(8) (2015)

  3. Anderson, D.D., Dumitrescu, T., Zafrullah, M.: Quasi-Schreier domains II. Commun. Algebra 35, 2096–2104 (2007)

    Article  MathSciNet  Google Scholar 

  4. Anderson, D.D., Zafrullah, M.: On \(\star \)-semi homogeneous integral domains, in Advances in Commutative Algebra, Editors: A. Badawi and J. Coykendall, pp. 7–31 (2019)

  5. Birkhoff, G.: Lattice Theory, Amer. Math. Soc. Colloq. Publication 25(1948)

  6. Cohn, P.M.: Bezout rings and their subrings. Proc. Camb. Philos. Soc. 64, 251–264 (1968)

    Article  MathSciNet  Google Scholar 

  7. Conrad, P.: Some structure theorems for lattice ordered groups. Trans. Am. Math. Soc. 99, 212–240 (1961)

    Article  MathSciNet  Google Scholar 

  8. Costa, D.L., Mott, J.L., Zafrullah, M.: The construction \( D+XD_{S}[X]\). J. Algebra 53, 423–439 (1978)

    Article  MathSciNet  Google Scholar 

  9. Costa, D.L., Mott, J.L., Zafrullah, M.: Overrings and dimensions of general \(D+M\) constructions. J. Nat. Sci. Math. 26(2), 7–14 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Dumitrescu, T., Moldovan, R.: Quasi-Schreier domains. Math. Rep. 5, 121–126 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Dumitrescu, T., Zafrullah, M.: Characterizing domains of finite \(\star \)-character. J. Pure Appl. Algebra 214, 2087–2091 (2010)

    Article  MathSciNet  Google Scholar 

  12. Dumitrescu, T., Zafrullah, M.: \(t\)-Schreier domains. Commun. Algebra 39, 808–818 (2011)

    Article  MathSciNet  Google Scholar 

  13. El-Baghdadi, S., Izelgue, L., Tamoussit, A.: Almost Krull domains and their rings of integer-valued polynomials. J. Pure Appl. Algebra 224(6), 106269 (2020)

  14. Fossum, R.: The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer grenzgebiete B. 74, Springer, Berlin (1973)

  15. Fuchs, L.: Riesz groups. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19, 1–34 (1965)

  16. Gabelli, S., Houston, E., Lucas, T.: The t#-property for integral domains. J. Pure Appl. Algebra 194, 281–298 (2004)

    Article  MathSciNet  Google Scholar 

  17. Gilmer, R.: Multiplicative Ideal Theory. Marcel-Dekker, New York (1972)

    MATH  Google Scholar 

  18. Gilmer, R.: Commutative Semigroup Rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1984)

  19. Glaz, S., Vascocelos, W.: Flat ideals II. Manuscr. Math. 22, 325–341 (1977)

    Article  MathSciNet  Google Scholar 

  20. Halter-Koch, F.: Ideal Systems. An Introduction to Ideal Theory. Marcel Dekker, New York (1998)

  21. Halter-Koch, F.: Mixed invertibility and Prufer-like monoids and domains, in Commutative Algebra and Its Applications, Proceedings of the Fez Conference, pp. 247–258, Walter de Gruyter, Berlin (2009)

  22. Heinzer, W., Ohm, J.: An essential ring which is not a v-multiplication ring. Can. J. Math. 25, 856–861 (1973)

    Article  MathSciNet  Google Scholar 

  23. Houston, E., Zafrullah, M.: Integral domains in which every \(t\)-ideal is divisorial. Michigan Math. J. 35, 291–300 (1988)

    Article  MathSciNet  Google Scholar 

  24. Houston, E., Zafrullah, M.: On \(t\)-invertibility II. Commun. Algebra 17(8), 1955–1969 (1989)

    Article  MathSciNet  Google Scholar 

  25. Houston, E., Zafrullah, M.: Integral domains in which any two \(v\)-coprime elements are comaximal. J. Algebra 423, 93–115 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kaplansky, I.: Commutative Rings. Allyn and Bacon, Boston (1970)

    MATH  Google Scholar 

  27. Liu, P., Yang, Y.C., Zafrullah, M.: Conrad’s F-condition for partially ordered monoids. Soft. Comput. 24, 9375–9381 (2020)

  28. McAdam, S., Rush, D.E.: Schreier rings. Bull. Lond. Math. Soc. 10, 77–80 (1978)

    Article  MathSciNet  Google Scholar 

  29. Matsuda, R.: Notes on torsion-free Abelian semigroup rings. Bull. Fac. Sci. Ibaraki Univ. 20, 51–59 (1988)

  30. Matsuda, R.: Note on Schreier semigroup rings. Math. J. Okayama Univ. 39, 41–44 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Mott, J., Rashid, M., Zafrullah, M.: Factoriality in Riesz groups. J. Group Theory 11(1), 23–41 (2008)

    Article  MathSciNet  Google Scholar 

  32. Mott, J., Zafrullah, M.: On Prufer v-multiplication domains. Manuscr. Math. 35, 1–26 (1981)

    Article  MathSciNet  Google Scholar 

  33. Mott, J., Zafrullah, M.: Unruly Hilbert domains. Can. Math. Bull. 33(1), 106–109 (1990)

    Article  MathSciNet  Google Scholar 

  34. Mott, J., Zafrullah, M.: On Krull domains. Arch. Math. 56, 559–568 (1991)

    Article  MathSciNet  Google Scholar 

  35. Nishimura, T.: On \(t\)-ideals of an integral domain. J. Math. Kyoto Univ. (JMKYAZ) 13–1, 59–65 (1973)

    MathSciNet  MATH  Google Scholar 

  36. Yang, Y.C., Zafrullah, M.: Bases of pre-Riesz groups and Conrad’s F-condition. Arab. J. Sci. Eng. 36, 1047–1061 (2011)

    Article  MathSciNet  Google Scholar 

  37. Zafrullah, M.: On generalized Dedekind domains. Mathematika 33, 285–295 (1986)

    Article  MathSciNet  Google Scholar 

  38. Zafrullah, M.: On a property of pre-Schreier domains. Commun. Algebra 15, 1895–1920 (1987)

    Article  MathSciNet  Google Scholar 

  39. Zafrullah, M.: Putting \(t\)-invertibility to use, Non-Noetherian Commutative Ring Theory, in: Math. Appl., vol. 520, Kluwer Acad. Publ., Dordrecht, pp. 429–457 (2000)

  40. Zafrullah, M.: What \(v\)-coprimality can do for you, in Multiplicative ideal theory in commutative algebra, 387–404. Springer, New York (2006)

    MATH  Google Scholar 

  41. Zafrullah, M.: Domains whose ideals meet a universal restriction, ar**v:2006.04135

  42. Zafrullah, M.: On \(\star \)-potent domains and \(\star \) -homogeneous ideals (accepted for publication in: Rings, Monoids, and Module Theory (Eds. A. Badawi and J. Coykendall), Springer (to appear). Also available at ar**v:1907.04384

  43. Zafrullah, M.: Semirigid GCD domains II, J. Algebra and Applications (to appear). https://doi.org/10.1142/s0219498822501614 (2022)

Download references

Acknowledgements

I am indebted to Brian Davey, the managing editor of Algebra Universalis, for straightening my original write up to make it look like a decent paper. In addition I must admit that I did not work in a vacuum, a lot of folks helped and I am thankful to all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zafrullah.

Additional information

Presented by W. Wm. McGovern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafrullah, M. Riesz and pre-Riesz monoids. Algebra Univers. 83, 9 (2022). https://doi.org/10.1007/s00012-021-00765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-021-00765-y

Keywords

Mathematics Subject Classification

Navigation