Log in

Comprehensive comparison of the prognostic value of systemic inflammation biomarkers for cancer cachexia: a multicenter prospective study

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aims

Systemic inflammation plays an important role in cancer cachexia. However, among the systemic inflammatory biomarkers, it is unclear which has optimal prognostic value for cancer cachexia.

Methods

The Kaplan–Meier method was used and the log-rank analysis was performed to estimate survival differences between groups. Cox proportional hazard regression analyses were conducted to assess independent risk factors for all-cause mortality.

Results

The C-reactive protein-to-albumin ratio (CAR) was the optimal prognostic assessment tool for patients with cancer cachexia, with 1-, 3-, and 5-year predictive powers of 0.650, 0.658, and 0.605, respectively. Patients with a high CAR had significantly lower survival rates than those with a low CAR. Moreover, CAR can differentiate the prognoses of patients with the same pathological stage. Cox proportional risk regression analyses showed that a high CAR was an independent risk factor for cancer cachexia. For every standard deviation increase in CAR, the risk of poor prognosis for patients with cancer cachexia was increased by 20% (hazard ratio = 1.200, 95% confidence interval = 1.132–1.273, P < 0.001).

Conclusions

CAR is an effective representative of systemic inflammation and a powerful factor for predicting the life function and clinical outcome of patients with cancer cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95.

    Article  PubMed  Google Scholar 

  3. von Haehling S, Anker SD. Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 2010;1:1–5.

    Article  Google Scholar 

  4. Tisdale MJ. Biology of cachexia. J Natl Cancer Inst. 1997;89:1763–73.

    Article  CAS  PubMed  Google Scholar 

  5. Pirisi A. US researchers find key link in muscle-wasting syndrome. Lancet. 2000;356:1249.

    Article  CAS  PubMed  Google Scholar 

  6. Ostan R, Lanzarini C, Pini E, Scurti M, Vianello D, Bertarelli C, et al. Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients. 2015;7:2589–621.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  8. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15:e493-503.

    Article  PubMed  Google Scholar 

  9. Patel HJ, Patel BM. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 2017;170:56–63.

    Article  CAS  PubMed  Google Scholar 

  10. Paval DR, Patton R, McDonald J, Skipworth RJE, Gallagher IJ, Laird BJ. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. J Cachexia Sarcopenia Muscle. 2022;13:824–38.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arthur PG, Grounds MD, Shavlakadze T. Oxidative stress as a therapeutic target during muscle wasting: considering the complex interactions. Curr Opin Clin Nutr Metab Care. 2008;11:408–16.

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Ranjit R, Richardson A, Van Remmen H. Muscle mitochondrial catalase expression prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of accelerated sarcopenia. J Cachexia Sarcopenia Muscle. 2021;12:1582–96.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shinko D, Diakos CI, Clarke SJ, Charles KA. Cancer-related systemic inflammation: the challenges and therapeutic opportunities for personalized medicine. Clin Pharmacol Ther. 2017;102:599–610.

    Article  PubMed  Google Scholar 

  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  15. Ishizuka M, Nagata H, Takagi K, Iwasaki Y, Kubota K. Combination of platelet count and neutrophil to lymphocyte ratio is a useful predictor of postoperative survival in patients with colorectal cancer. Br J Cancer. 2013;109:401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki S, Akiyoshi T, Oba K, Otsuka F, Tominaga T, Nagasaki T, et al. Comprehensive comparative analysis of prognostic value of systemic inflammatory biomarkers for patients with stage II/III colon cancer. Ann Surg Oncol. 2020;27:844–52.

    Article  PubMed  Google Scholar 

  17. Jiang Y, Xu D, Song H, Qiu B, Tian D, Li Z, et al. Inflammation and nutrition-based biomarkers in the prognosis of oesophageal cancer: a systematic review and meta-analysis. BMJ Open. 2021;11: e048324.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Song MM, Zhang X, Ding JS, Ruan GT, Zhang XW, et al. Association of systemic inflammation with survival in patients with cancer cachexia: results from a multicentre cohort study. J Cachexia Sarcopenia Muscle. 2021;12:1466–76.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burgassi F, Paillaud E, Poisson J, Bousquet G, Pamoukdjian F. Prognostic Value of Prospective Longitudinal CRP to Albumin Ratio among Older Outpatients with Cancer. Cancers (Basel) 2021; 13.

  20. Agha R, Abdall-Razak A, Crossley E, Dowlut N, Iosifidis C, Mathew G. STROCSS 2019 guideline: strengthening the reporting of cohort studies in surgery. Int J Surg. 2019;72:156–65.

    Article  PubMed  Google Scholar 

  21. **e H, Wei L, Liu M, Yuan G, Tang S, Gan J. Preoperative computed tomography-assessed sarcopenia as a predictor of complications and long-term prognosis in patients with colorectal cancer: a systematic review and meta-analysis. Langenbecks Arch Surg. 2021;406:1775–88.

    Article  PubMed  Google Scholar 

  22. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.

    Article  PubMed  Google Scholar 

  23. Anoveros-Barrera A, Bhullar AS, Stretch C, Esfandiari N, Dunichand-Hoedl AR, Martins KJB, et al. Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients. J Cachexia Sarcopenia Muscle. 2019;10:1356–77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seoudy H, Shamekhi J, Voigtländer L, Ludwig S, Frank J, Kujat T, et al. C-reactive protein to albumin ratio in patients undergoing transcatheter aortic valve replacement. Mayo Clin Proc. 2022;97:931–40.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang T, Ye B, Shen J. Prognostic value of albumin-related ratios in HBV-associated decompensated cirrhosis. J Clin Lab Anal. 2022;36: e24338.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao CK, Yu YL, Lin YC, Hsu YJ, Chern YJ, Chiang JM, et al. Prognostic value of the C-reactive protein to albumin ratio in colorectal cancer: an updated systematic review and meta-analysis. World J Surg Oncol. 2021;19:139.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bruserud Ø, Aarstad HH, Tvedt THA. Combined C-reactive protein and novel inflammatory parameters as a predictor in cancer-what can we learn from the hematological experience? Cancers (Basel) 2020; 12.

  28. Markanday A. Acute phase reactants in infections: evidence-based review and a guide for clinicians. Open Forum Infect Dis 2015; 2:ofv098.

  29. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baba H, Kuwabara K, Ishiguro T, Hatano S, Matsuzawa T, Fukuchi M, et al. C-reactive protein as a significant prognostic factor for stage IV gastric cancer patients. Anticancer Res. 2013;33:5591–5.

    CAS  PubMed  Google Scholar 

  31. Lorton CM, Higgins L, O'Donoghue N, Donohoe C, O'Connell J, Mockler D, et al. C-reactive protein and c-reactive protein-based scores to predict survival in esophageal and junctional adenocarcinoma: systematic review and meta-analysis. Ann Surg Oncol 2021.

  32. Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C. C-reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLoS One. 2015;10: e0143080.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dolan RD, McSorley ST, Horgan PG, Laird B, McMillan DC. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol. 2017;116:134–46.

    Article  PubMed  Google Scholar 

  34. Reynés G, Vila V, Martín M, Parada A, Fleitas T, Reganon E, et al. Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J Neurooncol. 2011;102:35–41.

    Article  PubMed  Google Scholar 

  35. Kemik O, Kemik AS, Begenik H, Erdur FM, Emre H, Sumer A, et al. The relationship among acute-phase responce proteins, cytokines, and hormones in various gastrointestinal cancer types patients with cachectic. Hum Exp Toxicol. 2012;31:117–25.

    Article  CAS  PubMed  Google Scholar 

  36. Van Vré EA, Bult H, Hoymans VY, Van Tendeloo VF, Vrints CJ, Bosmans JM. Human C-reactive protein activates monocyte-derived dendritic cells and induces dendritic cell-mediated T-cell activation. Arterioscler Thromb Vasc Biol. 2008;28:511–8.

    Article  PubMed  Google Scholar 

  37. Jimenez RV, Wright TT, Jones NR, Wu J, Gibson AW, Szalai AJ. C-reactive protein impairs dendritic cell development, maturation, and function: implications for peripheral tolerance. Front Immunol. 2018;9:372.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Evans DC, Corkins MR, Malone A, Miller S, Mogensen KM, Guenter P, et al. The use of visceral proteins as nutrition markers: an ASPEN position paper. Nutr Clin Pract. 2021;36:22–8.

    Article  CAS  PubMed  Google Scholar 

  39. Nazha B, Moussaly E, Zaarour M, Weerasinghe C, Azab B. Hypoalbuminemia in colorectal cancer prognosis: Nutritional marker or inflammatory surrogate? World J Gastrointest Surg. 2015;7:370–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39:534–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients and their families for participating in the study. This study was supported by the National Key Research and Development Program to Dr. Han** Shi (No. 2017YFC1309200, No. 2022YFC2009600) and the Bei**g Municipal Science and Technology Commission (SCW2018-06).

Author information

Authors

Contributions

HPS, HLX, GTR and LSW designed the study; HYZ, YZG and QZ conducted the literature search; YZG, QZ, MY, MT, and SQL collected the data; MMS, XZ, CHS, LD, and XYL analyzed the data; HLX, GTR and LSW wrote the article; HPS revised the article and took the decision to submit the article for publication. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Han** Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16389 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, H., Ruan, G., Wei, L. et al. Comprehensive comparison of the prognostic value of systemic inflammation biomarkers for cancer cachexia: a multicenter prospective study. Inflamm. Res. 71, 1305–1313 (2022). https://doi.org/10.1007/s00011-022-01626-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01626-7

Keywords

Navigation