Log in

Inhibition of macrophage activation and suppression of graft rejection by DTCM-glutarimide, a novel piperidine derived from the antibiotic 9-methylstreptimidone

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We have previously synthesized a novel piperidine compound, 3-[(dodecylthiocarbonyl)methyl]glutarimide (DTCM-glutarimide), that inhibits LPS-induced NO production, and in the present research we studied further the anti-inflammatory activity of DTCM-glutarimide in a macrophage cell line and in mice bearing transplanted hearts.

Materials and methods

Mouse macrophage-like RAW264.7 cells were employed for the evaluation of cellular inflammatory activity. DTCM-glutarimide was synthesized in our laboratory. The AP-1 activity was measured by nuclear translocation and phosphorylation. For the heart transplantation experiment, male C57BL/6 (H-2b) and BALB/c (H-2d) mice were used as donor and recipient, respectively. DTCM-glutarimide was administered intraperitoneally.

Results

DTCM-glutarimide inhibited the LPS-induced expression of iNOS and COX-2 in macrophages; but, unexpectedly, it did not inhibit LPS-induced NF-κB activation. Instead, it inhibited the nuclear translocation of both c-Jun and c-Fos. It also inhibited LPS-induced c-Jun phosphorylation. Moreover, it inhibited the mixed lymphocyte reaction in primary cultures of mouse spleen cells; and furthermore, in mice it prolonged the graft survival in heart transplantation experiments.

Conclusion

The novel piperidine compound, DTCM-glutarimide, was found to be a new inhibitor of macrophage activation, inhibiting AP-1 activity. It also inhibited graft rejection in mice, and thus may be a candidate for an anti-inflammatory agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsumoto N, Ariga A, To-e S, Nakamura H, Agata N, Hirano S, et al. Synthesis of NF-kappaB activation inhibitors derived from epoxyquino- micin C. Bioorg Med Chem Lett. 2000;10:865–9.

    Article  PubMed  CAS  Google Scholar 

  2. Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K. Inhibition of tumor necrosis f actor-alpha-induced nuclear translocation and activation of NF-kappa B by dehydroxy-methylepoxyquinomicin. J Biol Chem. 2002;277:24625–30.

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto M, Horie R, Takeiri M, Kozawa I, Umezawa K. Inactivation of NF-kappaB components by covalent binding of (−)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem. 2008;51:5780–8.

    Article  PubMed  CAS  Google Scholar 

  4. Watanabe M, Ohsugi T, Shoda M, Ishida T, Aizawa S, Maruyama-Nagai M, Utsunomiya A, Koga S, Yamada Y, Kamihira S, Okayama A, Kikuchi H, Uozumi K, Yamaguchi K, Higashihara M, Umezawa K, Watanabe T, Horie R. Dual targeting of transformed and untransformed HTLV-1-infected T-cells by DHMEQ, a potent and selective inhibitor of NF-κB, as a strategy for chemoprevention and therapy of adult T cell leukemia. Blood. 2005;106:2462–71.

    Article  PubMed  CAS  Google Scholar 

  5. Umezawa K. Inhibition of tumor growth by NF-κB inhibitors. Cancer Sci. 2006;97:990–5.

    Article  PubMed  CAS  Google Scholar 

  6. Hamasaka A, Yoshioka N, Abe R, Kishino S, Umezawa K, Ozaki M, Todo S, Shimizu H. Topical application of DHMEQ improves allergic inflammation via NF-κB inhibition. J Allergy Clin Immunol. 2010;126:400–3.

    Article  PubMed  Google Scholar 

  7. Ueki S, Yamashita K, Aoyagi T, Haga S, Suzuki T, Itoh T, et al. Control of allograft rejection by applying a novel nuclear factor-kappaB inhibitor, dehydroxymethylepoxy-quinomicin. Transplantation. 2006;82:1720–7.

    Article  PubMed  CAS  Google Scholar 

  8. Umezawa K. Screening of bioactive metabolites that suppress inflammation. Tanpakushitsu Kakusan Koso. 2007;52:1685–9.

    PubMed  CAS  Google Scholar 

  9. Ishikawa Y, Tachibana M, Matsui C, Obata R, Umezawa K, Nishiyama S. Synthesis and biological evaluation on novel analogs of 9-methylstreptimidone, an inhibitor of NF-kappaB. Bioorg Med Chem Lett. 2009;19:1726–8.

    Article  PubMed  CAS  Google Scholar 

  10. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–89.

    Article  PubMed  CAS  Google Scholar 

  11. Corry RJ, Winn HJ, Russel PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation. 1973;16:343–50.

    Article  PubMed  CAS  Google Scholar 

  12. Nomura M, Yamashita K, Murakami M, Takehara M, Echizenya H, Sunahara M, et al. Induction of donor-specific tolerance by adenovirus-mediated CD40Ig gene therapy in rat liver transplantation. Transplantation. 2002;73(9):1403–10.

    Article  PubMed  CAS  Google Scholar 

  13. Jang JH, Surh YJ. AP-1 mediates beta-amyloid-induced iNOS expression in PC12 cells via the ERK2 and p38 MAPK signaling pathways. Biochem Biophys Res Commun. 2005;331:1421–8.

    Article  PubMed  CAS  Google Scholar 

  14. Yea SS, Jeong HS, Choi CY, Park KR, Oh S, Shin JG, et al. Inhibitory effect of anethole on T-lymphocyte proliferation and interleukin-2 production through down-regulation of the NF-AT and AP-1. Toxicol In Vitro. 2006;20:1098–105.

    Article  PubMed  CAS  Google Scholar 

  15. Thornton TM, Zullo AJ, Williams KL, Taparowsky EJ. Direct manipulation of activator protein-1 controls thymocyte proliferation in vitro. Eur J Immunol. 2006;36:160–9.

    Article  PubMed  CAS  Google Scholar 

  16. Park PH, Kim HS, ** XY, ** F, Hur J, Ko G, et al. KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase-1 induction and blockade of activator protein-1. Eur J Pharmacol. 2009;606:215–24.

    Article  PubMed  CAS  Google Scholar 

  17. Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007;81:1602–14.

    Article  PubMed  CAS  Google Scholar 

  18. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271:33157–60.

    Article  PubMed  CAS  Google Scholar 

  19. Herschman HR. Prostaglandin synthase 2. Biochim Biophys Acta. 1996;1299:125–40.

    PubMed  Google Scholar 

  20. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120.

    Article  PubMed  CAS  Google Scholar 

  21. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    PubMed  CAS  Google Scholar 

  22. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, et al. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA. 1993;90:9730–4.

    Article  PubMed  CAS  Google Scholar 

  23. Yao J, Mackman N, Edgington TS, Fan ST. Inhibitory effect of 1,8-cineol (eucalyptol) on Egr-1 expression in lipopolysaccharide-stimulated THP-1 cells. J Biol Chem. 1997;272:17795–801.

    Article  PubMed  CAS  Google Scholar 

  24. Nakabeppu Y, Ryder K, Nathans D. DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell. 1988;5:907–15.

    Article  Google Scholar 

  25. Ryseck RP, Kovary K, Bravo R. Integrity of FOS B leucine zipper is essential for its interaction with JUN proteins. Oncogene. 1990;5:1091–3.

    PubMed  CAS  Google Scholar 

  26. Cohen DR, Curran T. fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol Cell Biol. 1988;8:2063–9.

    PubMed  CAS  Google Scholar 

  27. Nishina H, Sato H, Suzuki T, Sato M, Iba H. Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci USA. 1990;87:3619–23.

    Article  PubMed  CAS  Google Scholar 

  28. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell. 1988;54:541–52.

    Article  PubMed  CAS  Google Scholar 

  29. Macgregor PF, Abate C, Curran T. Direct cloning of leucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1. Oncogene. 1990;5:451–8.

    PubMed  CAS  Google Scholar 

  30. Hsu JC, Laz T, Mohn KL, Taub R. Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci USA. 1991;88:3511–5.

    Article  PubMed  CAS  Google Scholar 

  31. Dorsey MJ, Tae HJ, Sollenberger KG, Mascarenhas NT, Johansen LM, Taparowsky EJ. B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene. 1995;11:2255–65.

    PubMed  CAS  Google Scholar 

  32. Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76:1025–37.

    Article  PubMed  Google Scholar 

  33. Aikawa Y, Morimoto K, Yamamoto T, Chaki H, Hashiramoto A, Narita H, Hirono S, Shiozawa S. Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1. Nat Biotechnol. 2008;26:817–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by grants from the program Grants-in-Aid for Scientific Research on Priority Areas of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT). It was also supported by a High-Tech Research Center Project for Private Universities: matching fund subsidy from MEXT, 2006–2011, and the Global Center of Excellence Program from MEXT, 2007–2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Umezawa.

Additional information

Responsible Editor: Graham Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeiri, M., Tachibana, M., Kaneda, A. et al. Inhibition of macrophage activation and suppression of graft rejection by DTCM-glutarimide, a novel piperidine derived from the antibiotic 9-methylstreptimidone. Inflamm. Res. 60, 879–888 (2011). https://doi.org/10.1007/s00011-011-0348-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0348-z

Keywords

Navigation