Log in

The First Eigenvalue of the Kohn–Laplace Operator in the Heisenberg Group

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, by extending the notions of harmonic transplantation and harmonic radius in the Heisenberg group, we give an upper bound for the first eigenvalue for the following Dirichlet problem:

$$\begin{aligned} (P_{\Omega }) \left\{ \begin{array}{rllll} -\Delta _{\mathbb {H}^1} u &{} = &{} \lambda u &{}\quad \text{ in } &{} \Omega \\ u &{} = &{} 0 &{}\quad \text{ on } &{} \partial \Omega , \end{array} \right. \end{aligned}$$

where \( \Omega \) is a regular bounded domain of \( \mathbb {H}^1\) and \(\Delta _{\mathbb {H}^1}\) is the Kohn–Laplace operator. Using a result of Pansu which gives a relation between the volume of \(\Omega \) and the perimeter of its boundary, we prove that

$$\begin{aligned} \lambda _{1}( \Omega ) \le C_{\Omega } \frac{ l_{11}^2 }{ \max _{ \xi \in \Omega } r_{\Omega }^2(\xi )} \end{aligned}$$

where \(l_{11} \) is the first strictly positive zero of the Bessel function of first kind and order 1, \( C_{\Omega } \) is a constant depending of \( \Omega \), and \(r_{\Omega }(\xi ) \) is the harmonic radius of \( \Omega \) at a point \(\xi \) of \(\Omega .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hersch, J.: Transplantation harmonique, transplantation par modules et théorèmes isopérim étriques. Comment. Math. Helv. 44–3, 354–366 (1969)

    Article  MATH  Google Scholar 

  2. Polya, G., Schiffer, M.: Convexity of functionals by transplantation. J. Anal. Math. 3, 245–345 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Polya, G., Szego, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton (1951)

    MATH  Google Scholar 

  4. Bandle, C., Flucher, M.: Harmonic radius and concentration of energy, hyperbolic radius and Liouvilles equations. SIAM 38–2, 191–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandle, C., Brillard, A., Flucher, M.: Grenn’s function. Harmonic transplantation, and best Sobolev constant in spaces of constant curvature. Trans. Am. Math. Soc. 350–3, 1103–1128 (1998)

    Article  MATH  Google Scholar 

  6. Pansu, P.: Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad. Sci. Paris. I Math. 295–2, 127–130 (1982)

    MATH  Google Scholar 

  7. Pansu, P.: An isoperimetric inequality on the Heisenberg group. In: Conference on Differential Geometry on Homogeneous Spaces (Turin, 1983). Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983)

  8. Ritore, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \( {\mathbb{H}}^1 \). Adv. Math. 219–2, 633–671 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot Groups. Houston J. Math. 29–3, 609–637 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Luo, X., Niu, P.: Eigenvalue problems for square sum operators consisting of vector fields. Math. Appl. 10–4, 101–104 (1997)

    Google Scholar 

  11. Luo, X., Niu, P.: On the eigenvalues of the operator sum of squares of vector fields. Chin. Bull. Sci. 43, 263 (1998)

    Article  Google Scholar 

  12. Luo, X., Niu, P.: On the Dirichlet eigenvalue problem of the Folland-Stein operator in the Heisenberg group. Acta Math. Sci. 17, 70–75 (1997)

    Google Scholar 

  13. Kohn, J.J.: Boundaries of complex manifolds, pp. 81–94. Minneapolis, Proc. Conf. on complex manifolds (1964)

  14. Franchi, B., Serapione, R., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321, 479–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ritore, M., Rosales, C.: Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group. J. Geom. Anal. 16–4, 703–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gamara, N., Guemri, H.: Estimates of the Green’s function and its regular part on Heisenberg group domains. Adv. Nonlinear Stud. 11, 593–612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krantz, G.S., Parks, R.H.: Geometric Integration Theory, Springer Science and Business Media (2008)

  18. Chavel, I.: Riemaniann Geometry. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  19. Korenev, B.G.: Bessel Functions and Their Applications. CRC Press, Boca Raton (2003)

    Google Scholar 

  20. Capogna, L., Danielli, D., Garofalo, N.: An isoperimetric inequality and the geometric Sobolev embedding for vector fields. Math. Res. Lett. 1–2, 203–215 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Monti, R., Rickly, M.: Convex isoperimetric sets in the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(2), 391–415 (2009)

  22. Danielli, D., Garofalo, N., Nhieu, D.-M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math. 215–1, 292–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bony, J.M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénerés. Ann. Inst. Fourier 19–1, 277–304 (1969)

    Article  MATH  Google Scholar 

  24. Hansen, W., Hueber, H.: The Dirichlet problem for sub-Laplacians on nilpotent Lie groups-geometric criteria for regularity. Math. Ann. 276, 537–547 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank P. Pansu for his suggestions and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najoua Gamara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamara, N., Makni, A. The First Eigenvalue of the Kohn–Laplace Operator in the Heisenberg Group. Mediterr. J. Math. 14, 60 (2017). https://doi.org/10.1007/s00009-017-0851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0851-8

Keywords

Mathematics Subject Classification

Navigation