Log in

Quasi-monogenic Functions

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The aim of this work is to introduce quasi-monogenic functions, to prove their properties and to discuss some examples. Quasi-monogenic functions are null solutions of a differential operator with Fourier symbol \(|\underline{\xi }| m(\underline{\xi }),\) where \(m(\underline{\xi })\) is an \(L^p\)- multiplier. Furthermore, \(m(\underline{\xi })\) is the Fourier symbol of a generalized Riesz–Hilbert transform. As examples we investigate the Riesz–Hilbert transform, higher Riesz–Hilbert transforms, and the linearized Riesz transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Berlin (2012)

    Book  Google Scholar 

  2. Bernstein, S.: Fractional Riesz–Hilbert-type transforms and associated monogenic signals. Complex Anal. Oper. Theory 11, 995–1015 (2017). https://doi.org/10.1007/s11785-017-0667-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, S., Bouchot, J.-L., Reinhardt, M., Heise, B.: Generalized analytic signals in image processing: comparison, theory and applications. In: Hitzer, E., Sangwine, S.J. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 221–246. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  4. Bernstein, S., Heise, B., Reinhardt, M., Häuser, S., Schausberger, S., Stifter, D.: Fourier plane filtering revisited—analogies in optics and mathematics. Sampl. Theory Signal Image Process. 13(3), 231–248 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Research Notes in Mathematics, vol. 76. Pitman, London (1982)

    MATH  Google Scholar 

  6. Delanghe, R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1(1), 107–153 (2001)

    Article  MathSciNet  Google Scholar 

  7. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions, A Function Theory for the Dirac Operator, Mathematics and Its Applications, vol. 53. Springer, Amsterdam (1992)

    MATH  Google Scholar 

  8. Duoandikoetxea, J.: Fourier Analysis, Graduate studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)

    Google Scholar 

  9. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Proc. 49(12), 3136–3144 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–457 (1946)

    Google Scholar 

  11. Grafakos, L.: Classical Fourier Analysis, 1st edn. Springer, New York (2009)

    Book  Google Scholar 

  12. Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel (1990)

    Book  Google Scholar 

  13. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  14. Hahn, S.L.: Multidimensional complex signals with single-orthant spectra. Proc. IEEE 80(8), 1287–1300 (1992)

    Article  Google Scholar 

  15. Häuser, S., Heise, B., Steidl, G.: Linearized Riesz transform and quasi-monogenic shearlets. Int. J. Wavelets Multiresolut. Inf. Process. 12, 1450027 (2014). https://doi.org/10.1142/S0219691314500271

    Article  MathSciNet  MATH  Google Scholar 

  16. Held, S.: Monogenic Wavelet Frames of Image Analysis, Ph.D. thesis. TU München, Fakultät für Mathematik, Munich (2012)

    Google Scholar 

  17. Larkin, K.G., Bone, D.J., Oldfield, M.A.: Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J. Opt. Soc. Am. A 18(8), 1862–1870 (2001)

    Article  ADS  Google Scholar 

  18. McIntosh, A.: Fourier theory, singular integrals and harmonic functions on Lipschitz domains. In: Ryan, J. (ed.) Clifford Algebras in Analysis and Related Topics, pp. 33–88. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  19. Mikhlin, S.G.: Multidimensional Singular Integrals and Integral Equations, International Series of Monographs in pure and applied Mathematics, vol. 83. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  20. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  21. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, PMS 32. Princeton University Press, Princeton (1971)

    Google Scholar 

  22. Unser, M., Sage, D., Van De Ville, D.: Multiresolution monogenic signal analysis using the Riesz–Laplace wavelet transform. IEEE Trans. Image Process. 18(11), 2402–2418 (2009). https://doi.org/10.1109/TIP.2009.2027628

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swanhild Bernstein.

Additional information

This article is part of the Topical Collection on Proceedings ICCA 11, Ghent, 2017, edited by Hennie De Schepper, Fred Brackx, Joris van der Jeugt, Frank Sommen, and Hendrik De Bie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, S. Quasi-monogenic Functions. Adv. Appl. Clifford Algebras 28, 91 (2018). https://doi.org/10.1007/s00006-018-0908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0908-1

Keywords

Mathematics Subject Classification

Navigation