Log in

Factorisations of the Helmholtz Operator, Radó’s Theorem, and Clifford Analysis

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Radó’s theorem for holomorphic functions asserts that if a continuous function is holomorphic on the complement of its zero locus, then it is holomorphic everywhere. We prove in this paper an equivalent theorem for functions lying in the kernel of a first order differential operator \({\mathcal{D}}\) such that the Helmholtz operator ∇2+λ can be factorized as the composition \({\widehat{\mathcal{D}}\mathcal{D}}\) . We also analyse the factorisations \({\widehat{\mathcal{D}}\mathcal{D}}\) of the Laplace and Helmholtz operators associated to the Clifford analysis and the representations of holomorphic function of several complex variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. F. Brackx, R. Delanghe and F. Sommen, Clifford analysis. Research Notes in Mathematics, 76. Pitman, Boston, 1982.

  2. Deavours C.A.: The quaternion calculus. Amer.Math. Monthly 80, 995–1008 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y.V. Egorov, Microlocal analysis. In Partial differential equations IV: microlocal analysis and hyperbolic equations. Encyclopaedia of mathematical sciences, 33. Y.V. Egorov and M.A. Shubin (editors). Springer Verlag, Berlin, 1993.

  4. Y.V. Egorov and B.W. Schulze, Pseudo-differential operators, singularities, applications. Operator theory, advances and applications, 93. Birkhäuser, Basel, 1997.

  5. Folland G.B.: Introduction to partial differential equations Second edition. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  6. Fueter R.: Über einen Hartogs’schen Satz in der Theorie der analytischen Funktionen von n komplexen Variablen. Comment. Math. Helv, 14, 394–400 (1942)

    Article  MathSciNet  Google Scholar 

  7. Fueter R.: Über Abelsche Funktionen von zwei Komplexen Variablen. Ann. Mat. Pura Appl. (4) 28, 211–215 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gürlebeck K., Habetha K., Sprößig W.: Holomorphic functions in the plane and n-dimensional space. Translated from the 2006 German original. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  9. Hounie J., Tavares J.: Radó’s theorem for locally solvable vector fields. Proc. Amer. Math. Soc. 119(3), 829–836 (1993)

    MathSciNet  MATH  Google Scholar 

  10. J. Jost, Partial differential equations. Second edition. Graduate texts in mathematics, 214. Springer Verlag, New York, 2007.

  11. J. Keller, Clifford algebra and the construction of a theory of elementary particle fields. Adv. appl. Clifford alg. 4 (S1) (1994) (proc. suppl.), 379-393.

  12. J. Keller, Factorization of the Laplacian and families of elementary particles. In: Symmetry Methods in Physics, edited by A.N. Sissakian, G.S. Pogosyan, and S.I. Vinitsky, Vol. I, pp. 236–241. JIRN, Dubna, 1994.

  13. J. Keller, Theory of the electron: a theory of matter from START. Fundamental theories of physics, Vol. 115. Kluwer Academic Publisher, Dordrecht (Netherlands), 2001.

  14. Král J.: Some extension results concerning harmonic functions. J. London Math. Soc. 28(1), 62–70 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. G. Krantz, Function theory of several complex variables. Reprint of the 1992 edition. AMS Chelsea Publishing, Providence, 2001.

  16. Rudin W.: Real and complex analysis Second edition. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  17. Sommen F., Peña Peña D.: Martinelli-Bochner formula using Clifford analysis. Arch. Math. 88, 358–363 (2007)

    Article  MATH  Google Scholar 

  18. Sudbery A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(2), 199–224 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. N. N. Tarkhanov, The Analysis of solutions of elliptic equations. Mathematics and its applications, Vol. 406. Kluwer Academic, Dordrecht, 1997.

  20. Tavares J.: On the Radó’s Theorem for locally integrable structures. J. Math. Anal. Appl. 191(3), 490–496 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Zeron.

Additional information

Research supported by Cinvestav (Mexico) and Conacyt (Mexico).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez–Flores, C., Zeron, E.S. Factorisations of the Helmholtz Operator, Radó’s Theorem, and Clifford Analysis. Adv. Appl. Clifford Algebras 21, 89–101 (2011). https://doi.org/10.1007/s00006-010-0254-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-010-0254-4

Mathematics Subject Classification (2010)

Keywords

Navigation