Log in

Acute toxoplasmosis can increase serum dopamine level

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Toxoplasmosis is a globally parasitic zoonotic disease transmitted by Toxoplasma gondii protozoa. This infection in its chronic form can cause a change in its host's specific behavior and is also associated with develo** neuropsychological symptoms in humans. Changes in neurotransmitters' levels, especially dopamine, have been identified as a behavior change factor in the infected host. This study aimed to evaluate serum dopamine levels in acute murine toxoplasmosis. In this study, 50 mice infected with Toxoplasma were studied in 5 separate groups, and ten healthy mice were considered as negative control. For five consecutive days after parasite injection, blood sampling and serum isolation were performed daily from one of the groups. Serum dopamine levels were measured by HPLC method. Statistical studies showed that serum dopamine on the first to the fourth day after parasite inoculation was the same as the negative control, but the fifth day began to increase. The present study results indicate that dopamine production in mice infected with Toxoplasma gondii increases from day five after infection. This result suggests that in acute toxoplasmosis, dopamine production is low, and the trend of chronic disease increases dopamine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asgari Q, Mehrabani D, Motazedian M, Kalantari M, Nouroozi J, Adnani Sadati S (2011) The viability and infectivity of Toxoplasma gondii tachyzoites in dairy products undergoing food processing. Asian J Anim Sci 5(2):1–6

    Google Scholar 

  • Asgari Q, Keshavarz H, Shojaee S, Motazedian MH, Mohebali M, Miri R, Mehrabani D, Rezaeian M (2013) In vitro and in vivo potential of RH strain of Toxoplasma gondii (Type I) in tissue cyst forming. Iran J Parasitol 8(3):367–375

    PubMed  PubMed Central  Google Scholar 

  • Asgari Q, Sisakht MM, Shahabadi SN, Karami F, Omidian M (2020) Serum tyrosine level in acute murine toxoplasmosis. Iran J Parasitol 15(4):568–575

    PubMed  PubMed Central  Google Scholar 

  • Babaie J, Sayyah M, Fard-Esfahani P, Golkar M, Gharagozli K (2017) Contribution of dopamine neurotransmission in proconvulsant effect of Toxoplasma gondii infection in male mice. J Neurosci Res 95(10):1894–1905

    Article  CAS  Google Scholar 

  • Bahreini MS, Zarei F, Dastan N, Sami Jahromi S, Pourzargham P, Asgari Q (2020) The relationship between Toxoplasma gondii infection in mothers and neonate’s gender. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1849103

    Article  PubMed  Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc Soc Exp Biol Med 267(1452):1591–1594

    Article  CAS  Google Scholar 

  • Berenreiterová M, Flegr J, Kuběna AA, Němec P (2011) The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PloS one 6(12):e28925

    Article  Google Scholar 

  • Berke JD (2018) What does dopamine mean? Nat Neurosci 21(6):787–793

    Article  CAS  Google Scholar 

  • Boillat M, Hammoudi PM, Dogga SK, Pagès S, Goubran M, Rodriguez I, Soldati-Favre D (2020) Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell reports 30(2):320–334

    Article  CAS  Google Scholar 

  • Bucolo C, Leggio GM, Drago F, Salomone S (2019) Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 203:107392

    Article  CAS  Google Scholar 

  • Buttarelli RF, Fanciulli A, Pellicano C, Pontieri E, F, (2011) The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders. Curr Neuropharmacol 9(2):278–288

    Article  CAS  Google Scholar 

  • Carey RM (2001) Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 38(3):297–302

    Article  CAS  Google Scholar 

  • Carruthers VB, Suzuki Y (2007) Effects of Toxoplasma gondii infection on the brain. Schizophr Bull 33(3):745–751

    Article  Google Scholar 

  • Council NR (2011) Guide for the care and use of laboratory animals, National Academies Press, Washington

  • Del Grande C, Galli L, Schiavi E, Dell’osso L, Bruschi F, (2017) Is Toxoplasma gondii a trigger of bipolar disorder? Pathogens 6(1):3

    Article  Google Scholar 

  • Dubey JP (2020) The history and life cycle of Toxoplasma gondii. Elsevier, USA

    Book  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56(3):331–349

    Article  CAS  Google Scholar 

  • Fekadu A, Shibre T, Cleare AJ (2010) Toxoplasmosis as a cause for behaviour disorders-overview of evidence and mechanisms. Folia Parasitol 57(2):105

    Article  Google Scholar 

  • Flegr J (2013a) How and why Toxoplasma makes us crazy. Trends Parasitol 29(4):156–163

    Article  Google Scholar 

  • Flegr J (2013b) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma–human model in studying the manipulation hypothesis. J Exp Biol 216(1):127–133

    Article  Google Scholar 

  • Gaskell EA, Smith JE, Pinney JW, Westhead DR, Mcconkey GA (2009) A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PloS one 4(3):e4801

    Article  Google Scholar 

  • Hammoudi P-M, Soldati-Favre D (2017) Insights into the molecular basis of host behaviour manipulation by Toxoplasma gondii infection. Emerging Top Life Sci 1(6):563–572

    Article  CAS  Google Scholar 

  • Innes E (2010) A brief history and overview of Toxoplasma gondii. Zoonoses Public Health 57(1):1–7

    Article  CAS  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30(5):188–193

    Article  CAS  Google Scholar 

  • Johnson SK, Johnson PTJ (2020) Toxoplasmosis: recent advances in understanding the link between infection and host behavior. Annu Rev Anim Biosci 9(1):249–264

    Article  Google Scholar 

  • Kaňková Š, Kodym P, Flegr J (2011) Direct evidence of Toxoplasma-induced changes in serum testosterone in mice. Exp Parasitol 128(3):181–183

    Article  Google Scholar 

  • Lim A, Kumar V, Hari Dass SA, Vyas A (2013) Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol 22(1):102–110

    Article  CAS  Google Scholar 

  • Mirzaeipour M, Mikaeili F, Asgari Q, Nohtani M, Rashidi S, Bahreini MS (2020) Evaluation of the tyrosine and dopamine serum level in experimental infected BALB/c mice with chronic toxoplasmosis. bioRxiv.

  • Omidian M, Ganjkarimi AH, Asgari Q, Hatam G (2020) Molecular and serological study on congenital toxoplasmosis in newborn of Shiraz, Southern Iran. E Environ Sci Pollut Res Int 28(3):16122–16128

    Google Scholar 

  • Parlog A, Schlüter D, Dunay IR (2015) Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 37(3):159–170

    Article  CAS  Google Scholar 

  • Pearce BD, Kruszon-Moran D, Jones JL (2012) The relationship between Toxoplasma gondii infection and mood disorders in the third national health and nutrition survey. Biol Psychiatry 72(4):290–295

    Article  Google Scholar 

  • Robert-Gangneux F, Dardé M-L (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296

    Article  CAS  Google Scholar 

  • Saadatnia G, Golkar M (2012) A review on human toxoplasmosis. Scand J Infect Dis 44(11):805–814

    Article  Google Scholar 

  • Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24(4):525–528

    Article  CAS  Google Scholar 

  • Shiadeh MN, Esfandyari S, Ashrafmansouri M, Mirzapour A, Taghipour A, Spotin A, Arefkhah N, Gamble R, Safa A, Rostami A (2020) The prevalence of latent and acute toxoplasmosis in HIV-infected pregnant women: a systematic review and meta-analysis. Microb Pathog. https://doi.org/10.1016/j.micpath.2020.104549

    Article  Google Scholar 

  • Stibbs H (1985) Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol 79(2):153–157

    Article  CAS  Google Scholar 

  • Strobl JS, Goodwin DG, Rzigalinski BA, Lindsay DS (2012) Dopamine stimulates propagation of Toxoplasma gondii tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures. J Parasitol 98(6):1296–1299

    Article  Google Scholar 

  • Torrey EF, Yolken RH (2003) Toxoplasma gondii and schizophrenia. Emerg Infect Dis 9(11):1375

    Article  Google Scholar 

  • Wang ZT, Verma SK, Dubey JP, Sibley LD (2017) The aromatic amino acid hydroxylase genes AAH1 and AAH2 in Toxoplasma gondii contribute to transmission in the cat. PLoS pathogens 13(3):e1006272

    Article  Google Scholar 

  • **ao J, Li Y, Prandovszky E, Karuppagounder SS, Talbot CC Jr, Dawson VL, Dawson TM, Yolken RH (2014) MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. J Neurosci 268:128–138

    Article  CAS  Google Scholar 

  • **ao J, Prandovszky E, Kannan G, Pletnikov MV, Dickerson F, Severance EG, Yolken RH (2018) Toxoplasma gondii: biological parameters of the connection to schizophrenia. Schizophr Bull 44(5):983–992

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Office of Vice-Chancellor for Research of Shiraz University of Medical Sciences, Shiraz, Iran, to support this project. This article was extracted from an MD thesis by Shokoufeh Moshgi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jafar Adnani Sadati.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidian, M., Asgari, Q., Bahreini, M.S. et al. Acute toxoplasmosis can increase serum dopamine level. J Parasit Dis 46, 337–342 (2022). https://doi.org/10.1007/s12639-021-01447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-021-01447-1

Keywords

Navigation