Log in

Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the μ-τ -sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].

    Article  ADS  Google Scholar 

  2. F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571 [SPIRES].

    Article  ADS  Google Scholar 

  3. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].

    Article  ADS  Google Scholar 

  4. P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  5. T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in Proceedings of Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 1979 O. Sawada and A. Sugamoto eds., pg. 95 [SPIRES].

  6. M. Gell-Mann, P. Ramond, and R. Slansky, Complex Spinors And Unified Theories, in Supergravity: proceedings of the Supergravity Workshop at Stony Brook, Stony Brook U.S.A. September 27–29 1979, P. van Nieuwenhuizen and D. Freedman eds., North-Holland Pub. Co., New York U.S.A. (1979), pg. 315 [SPIRES].

  7. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  8. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].

    ADS  Google Scholar 

  9. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  10. C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [SPIRES].

    Article  ADS  Google Scholar 

  11. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  12. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  13. T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].

    ADS  Google Scholar 

  14. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  15. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [ar**v:0707.4058] [SPIRES].

    Article  ADS  Google Scholar 

  16. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev. D 78 (2008) 013010 [ar**v:0803.4008] [SPIRES].

    ADS  Google Scholar 

  17. A. de Gouvêa, G.F. Giudice, A. Strumia and K. Tobe, Phenomenological implications of neutrinos in extra dimensions, Nucl. Phys. B 623 (2002) 395 [hep-ph/0107156] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Broncano, M.B. Gavela and E.E. Jenkins, Neutrino Physics in the Seesaw Model, Nucl. Phys. B 672 (2003) 163 [hep-ph/0307058] [SPIRES].

    Article  ADS  Google Scholar 

  19. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the Leptonic Mixing Matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].

    Article  ADS  Google Scholar 

  20. A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [SPIRES].

    ADS  Google Scholar 

  21. L. Wolfenstein, A Theoretical Pattern for Neutrino Oscillations, Nucl. Phys. B 175 (1980) 93 [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Zee, Charged Scalar Field and Quantum Number Violations, Phys. Lett. B 161 (1985) 141 [SPIRES].

    ADS  Google Scholar 

  23. K.S. Babu, Model of “Calculable” Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [SPIRES].

    ADS  Google Scholar 

  24. E. Ma, Pathways to Naturally Small Neutrino Masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  25. K.S. Babu and C. Macesanu, Two-loop neutrino mass generation and its experimental consequences, Phys. Rev. D 67 (2003) 073010 [hep-ph/0212058] [SPIRES].

    ADS  Google Scholar 

  26. L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [SPIRES].

    ADS  Google Scholar 

  27. K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter model, Phys. Rev. D 69 (2004) 113009 [hep-ph/0403003] [SPIRES].

    ADS  Google Scholar 

  28. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].

    ADS  Google Scholar 

  29. E. Ma and U. Sarkar, Revelations of the E6/U(1)N model: Two-loop neutrino mass and dark matter, Phys. Lett. B 653 (2007) 288 [ar**v:0705.0074] [SPIRES].

    ADS  Google Scholar 

  30. M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [ar**v:0807.0361] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Aoki, S. Kanemura and O. Seto, A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology, Phys. Rev. D 80 (2009) 033007 [ar**v:0904.3829] [SPIRES].

    ADS  Google Scholar 

  32. J. Schechter and J.W.F. Valle, Neutrinoless double-beta decay in SU(2) × U(1) theories, Phys. Rev. D 25 (1982) 2951 [SPIRES].

    ADS  Google Scholar 

  33. S. Nandi and U. Sarkar, A solution to the neutrino mass problem in superstring E 6 theory, Phys. Rev. Lett. 56 (1986) 564 [SPIRES].

    Article  ADS  Google Scholar 

  34. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and Baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].

    ADS  Google Scholar 

  35. G.C. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [SPIRES].

    Article  ADS  Google Scholar 

  36. M.C. Gonzalez-Garcia and J.W.F. Valle, Fast decaying neutrinos and observable flavor violation in a new class of majoron models, Phys. Lett. B 216 (1989) 360 [SPIRES].

    ADS  Google Scholar 

  37. E. Ma, Naturally small seesaw neutrino mass with no new physics beyond the TeV scale, Phys. Rev. Lett. 86 (2001) 2502 [hep-ph/0011121] [SPIRES].

    Article  ADS  Google Scholar 

  38. M.B. Tully and G.C. Joshi, Generating neutrino mass in the 331 model, Phys. Rev. D 64 (2001) 011301 [hep-ph/0011172] [SPIRES].

    ADS  Google Scholar 

  39. W. Loinaz, N. Okamura, S. Rayyan, T. Takeuchi and L.C.R. Wijewardhana, Quark-lepton unification and lepton flavor non-conservation from a TeV-scale seesaw neutrino mass texture, Phys. Rev. D 68 (2003) 073001 [hep-ph/0304004] [SPIRES].

    ADS  Google Scholar 

  40. M. Hirsch and J.W.F. Valle, Supersymmetric origin of neutrino mass, New J. Phys. 6 (2004) 76 [hep-ph/0405015] [SPIRES].

    Article  ADS  Google Scholar 

  41. A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].

    ADS  Google Scholar 

  42. A. de Gouvêa and J. Jenkins, A Survey of Lepton Number Violation Via Effective Operators, Phys. Rev. D 77 (2008) 013008 [ar**v:0708.1344] [SPIRES].

    ADS  Google Scholar 

  43. J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [ar**v:0705.3221] [SPIRES].

    ADS  Google Scholar 

  44. M. Malinsky, T. Ohlsson and H. Zhang, Non-Standard Neutrino Interactions from a Triplet Seesaw Model, Phys. Rev. D 79 (2009) 011301 [ar**v:0811.3346] [SPIRES].

    ADS  Google Scholar 

  45. W. Grimus, L. Lavoura and B. Radovcic, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [ar**v:0902.2325] [SPIRES].

    ADS  Google Scholar 

  46. M. Malinsky, T. Ohlsson and H. Zhang, Non-unitarity effects in a realistic low-scale seesaw model, Phys. Rev. D 79 (2009) 073009 [ar**v:0903.1961] [SPIRES].

    ADS  Google Scholar 

  47. M. Malinsky, T. Ohlsson, Z.-z. **ng and H. Zhang, Non-unitary neutrino mixing and CP-violation in the minimal inverse seesaw model, Phys. Lett. B 679 (2009) 242 [ar**v:0905.2889] [SPIRES].

    ADS  Google Scholar 

  48. P.S.B. Dev and R.N. Mohapatra, TeV Scale Inverse Seesaw in SO(10) and Leptonic Non-Unitarity Effects, Phys. Rev. D 81 (2010) 013001 [ar**v:0910.3924] [SPIRES].

    ADS  Google Scholar 

  49. H. Zhang and S. Zhou, The Minimal Seesaw Model at the TeV Scale, Phys. Lett. B 685 (2010) 297 [ar**v:0912.2661] [SPIRES].

    ADS  Google Scholar 

  50. K.S. Babu and S. Nandi, Natural fermion mass hierarchy and new signals for the Higgs boson, Phys. Rev. D 62 (2000) 033002 [hep-ph/9907213] [SPIRES].

    ADS  Google Scholar 

  51. M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge trimming of neutrino masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [SPIRES].

    ADS  Google Scholar 

  52. I. Gogoladze, N. Okada and Q. Shafi, NMSSM and Seesaw Physics at LHC, Phys. Lett. B 672 (2009) 235 [ar**v:0809.0703] [SPIRES].

    ADS  Google Scholar 

  53. G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [ar**v:0804.1753] [SPIRES].

    ADS  Google Scholar 

  54. K.S. Babu, S. Nandi and Z. Tavartkiladze, New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [ar**v:0905.2710] [SPIRES].

    ADS  Google Scholar 

  55. P.-H. Gu, H.-J. He, U. Sarkar and X.-m. Zhang, Double Type-II Seesaw, Baryon Asymmetry and Dark Matter for Cosmic e ± Excesses, Phys. Rev. D 80 (2009) 053004 [ar**v:0906.0442] [SPIRES].

    ADS  Google Scholar 

  56. F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [ar**v:0907.3143] [SPIRES].

    Article  ADS  Google Scholar 

  57. F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [SPIRES].

    Article  Google Scholar 

  58. M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [ar**v:0809.3451] [SPIRES].

    ADS  Google Scholar 

  59. J. Tang and W. Winter, Physics with near detectors at a neutrino factory, Phys. Rev. D 80 (2009) 053001 [ar**v:0903.3039] [SPIRES].

    ADS  Google Scholar 

  60. S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory, Phys. Rev. D 80 (2009) 033002 [ar**v:0903.3986] [SPIRES].

    ADS  Google Scholar 

  61. E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [SPIRES].

    ADS  Google Scholar 

  62. J.W.F. Valle, Resonant oscillations of massless neutrinos in matter, Phys. Lett. B 199 (1987) 432 [SPIRES].

    ADS  Google Scholar 

  63. M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [SPIRES].

    ADS  Google Scholar 

  64. E. Roulet, Mikheyev-Smirnov-Wolfenstein effect with flavor-changing neutrino interactions, Phys. Rev. D 44 (1991) 935 [SPIRES].

    ADS  Google Scholar 

  65. Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments, Phys. Lett. B 359 (1995) 141 [hep-ph/9507344] [SPIRES].

    ADS  Google Scholar 

  66. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].

    ADS  Google Scholar 

  67. S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42 (1985) 913 [SPIRES].

    Google Scholar 

  68. P. Huber, T. Schwetz and J.W.F. Valle, Confusing non-standard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [SPIRES].

    ADS  Google Scholar 

  69. T. Ota, J. Sato and N.-a. Yamashita, Oscillation enhanced search for new interaction with neutrinos, Phys. Rev. D 65 (2002) 093015 [hep-ph/0112329] [SPIRES].

    ADS  Google Scholar 

  70. M.C. Gonzalez-Garcia, Y. Grossman, A. Gusso and Y. Nir, New CP-violation in neutrino oscillations, Phys. Rev. D 64 (2001) 096006 [hep-ph/0105159] [SPIRES].

    ADS  Google Scholar 

  71. A.M. Gago, M.M. Guzzo, H. Nunokawa, W.J.C. Teves and R. Zukanovich Funchal, Probing flavor changing neutrino interactions using neutrino beams from a muon storage ring, Phys. Rev. D 64 (2001) 073003 [hep-ph/0105196] [SPIRES].

    ADS  Google Scholar 

  72. P. Huber and J.W.F. Valle, Non-standard interactions: Atmospheric versus neutrino factory experiments, Phys. Lett. B 523 (2001) 151 [hep-ph/0108193] [SPIRES].

    ADS  Google Scholar 

  73. J. Kopp, M. Lindner and T. Ota, Discovery reach for non-standard interactions in a neutrino factory, Phys. Rev. D 76 (2007) 013001 [hep-ph/0702269] [SPIRES].

    ADS  Google Scholar 

  74. N.C. Ribeiro, H. Minakata, H. Nunokawa, S. Uchinami and R. Zukanovich-Funchal, Probing Non-Standard Neutrino Interactions with Neutrino Factories, JHEP 12 (2007) 002 [ar**v:0709.1980] [SPIRES].

    Article  Google Scholar 

  75. J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007 [ar**v:0804.2261] [SPIRES].

    ADS  Google Scholar 

  76. W. Winter, Testing non-standard CP-violation in neutrino propagation, Phys. Lett. B 671 (2009) 77 [ar**v:0808.3583] [SPIRES].

    ADS  Google Scholar 

  77. M. Campanelli and A. Romanino, Effects of new physics in neutrino oscillations in matter, Phys. Rev. D 66 (2002) 113001 [hep-ph/0207350] [SPIRES].

    ADS  Google Scholar 

  78. M. Honda, N. Okamura and T. Takeuchi, Matter effect on neutrino oscillations from the violation of universality in neutrino neutral current interactions, hep-ph/0603268 [SPIRES].

  79. R. Adhikari, S.K. Agarwalla and A. Raychaudhuri, Can R-parity violating supersymmetry be seen in long baseline beta-beam experiments?, Phys. Lett. B 642 (2006) 111 [hep-ph/0608034] [SPIRES].

    ADS  Google Scholar 

  80. M. Blennow, T. Ohlsson and J. Skrotzki, Effects of non-standard interactions in the MINOS experiment, Phys. Lett. B 660 (2008) 522 [hep-ph/0702059] [SPIRES].

    ADS  Google Scholar 

  81. J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [ar**v:0708.0152] [SPIRES].

    ADS  Google Scholar 

  82. M. Blennow, D. Meloni, T. Ohlsson, F. Terranova and M. Westerberg, Non-standard interactions using the OPERA experiment, Eur. Phys. J. C 56 (2008) 529 [ar**v:0804.2744] [SPIRES].

    Article  ADS  Google Scholar 

  83. N. Kitazawa, H. Sugiyama and O. Yasuda, Will MINOS see new physics?, hep-ph/0606013 [SPIRES].

  84. G. Altarelli and D. Meloni, CP violation in neutrino oscillations and new physics, Nucl. Phys. B 809 (2009) 158 [ar**v:0809.1041] [SPIRES].

    Article  ADS  Google Scholar 

  85. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [ar**v:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  86. D. Meloni, T. Ohlsson and H. Zhang, Exact and Approximate Formulas for Neutrino Mixing and Oscillations with Non-Standard Interactions, JHEP 04 (2009) 033 [ar**v:0901.1784] [SPIRES].

    Article  ADS  Google Scholar 

  87. M.C. Gonzalez-Garcia, Y. Grossman, A. Gusso and Y. Nir, New CP-violation in neutrino oscillations, Phys. Rev. D 64 (2001) 096006 [hep-ph/0105159] [SPIRES].

    ADS  Google Scholar 

  88. S.M. Bilenky and C. Giunti, Seesaw type mixing and ν μν τ oscillations, Phys. Lett. B 300 (1993) 137 [hep-ph/9211269] [SPIRES].

    ADS  Google Scholar 

  89. P. Huber, T. Schwetz and J.W.F. Valle, Confusing non-standard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [SPIRES].

    ADS  Google Scholar 

  90. T. Ohlsson and H. Zhang, Non-Standard Interaction Effects at Reactor Neutrino Experiments, Phys. Lett. B 671 (2009) 99 [ar**v:0809.4835] [SPIRES].

    ADS  Google Scholar 

  91. P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [SPIRES].

    ADS  Google Scholar 

  92. C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [SPIRES].

    Article  ADS  Google Scholar 

  93. S. Bergmann and Y. Grossman, Can lepton flavor violating interactions explain the LSND results?, Phys. Rev. D 59 (1999) 093005 [hep-ph/9809524] [SPIRES].

    ADS  Google Scholar 

  94. S. Bergmann, Y. Grossman and D.M. Pierce, Can lepton flavor violating interactions explain the atmospheric neutrino problem?, Phys. Rev. D 61 (2000) 053005 [hep-ph/9909390] [SPIRES].

    ADS  Google Scholar 

  95. Z. Berezhiani and A. Rossi, Limits on the non-standard interactions of neutrinos from e + e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [SPIRES].

    ADS  Google Scholar 

  96. M.S. Bilenky and A. Santamaria, One loop effective Lagrangian for a standard model with a heavy charged scalar singlet, Nucl. Phys. B 420 (1994) 47 [hep-ph/9310302] [SPIRES].

    Article  ADS  Google Scholar 

  97. F. Cuypers and S. Davidson, Bileptons: Present limits and future prospects, Eur. Phys. J. C 2 (1998) 503 [hep-ph/9609487] [SPIRES].

    Article  ADS  Google Scholar 

  98. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [ar**v:0807.1003] [SPIRES].

    Article  ADS  Google Scholar 

  99. T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269 [ar**v:0909.0455] [SPIRES].

    ADS  Google Scholar 

  100. C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [ar**v:0907.0097] [SPIRES].

    Article  ADS  Google Scholar 

  101. http://www-off-axis.fnal.gov/MINSIS/

  102. A. Donini, K.-i. Fuki, J. Lopez-Pavon, D. Meloni and O. Yasuda, The discovery channel at the Neutrino Factory: ν μν τ pointing to sterile neutrinos, JHEP 08 (2009) 041 [ar**v:0812.3703] [SPIRES].

    Article  ADS  Google Scholar 

  103. T. Ota and J. Sato, Can ICARUS and OPERA give information on a new physics?, Phys. Lett. B 545 (2002) 367 [hep-ph/0202145] [SPIRES].

    ADS  Google Scholar 

  104. A. Dighe and S. Ray, Signatures of heavy sterile neutrinos at long baseline experiments, Phys. Rev. D 76 (2007) 113001 [ar**v:0709.0383] [SPIRES].

    ADS  Google Scholar 

  105. S. Goswami and T. Ota, Testing non-unitarity of neutrino mixing matrices at neutrino factories, Phys. Rev. D 78 (2008) 033012 [ar**v:0802.1434] [SPIRES].

    ADS  Google Scholar 

  106. A. Esteban-Pretel, J.W.F. Valle and P. Huber, Can OPERA help in constraining neutrino non-standard interactions?, Phys. Lett. B 668 (2008) 197 [ar**v:0803.1790] [SPIRES].

    ADS  Google Scholar 

  107. http://www.ids-nf.org.

  108. P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [SPIRES].

    Article  ADS  Google Scholar 

  109. P. Huber, M. Lindner, M. Rolinec and W. Winter, Optimization of a neutrino factory oscillation experiment, Phys. Rev. D 74 (2006) 073003 [hep-ph/0606119] [SPIRES].

    ADS  Google Scholar 

  110. MINOS collaboration, E. Ables et al., P-875: a long baseline neutrino oscillation experiment at Fermilab, FERMILAB-PROPOSAL-P-875 (2002) [SPIRES].

  111. D. Autiero et al., The synergy of the golden and silver channels at the Neutrino Factory, Eur. Phys. J. C 33 (2004) 243 [hep-ph/0305185] [SPIRES].

    ADS  Google Scholar 

  112. A.D. Bross, M. Ellis, S. Geer, O. Mena and S. Pascoli, A Neutrino factory for both large and small θ13, Phys. Rev. D 77 (2008) 093012 [ar**v:0709.3889] [SPIRES].

    ADS  Google Scholar 

  113. A. Bross et al., The multi-channel low energy neutrino factory, ar**v:0911.3776 [SPIRES].

  114. A. Rubbia, Neutrino factories: detector concepts for studies of CP and T violation effects in neutrino oscillations, hep-ph/0106088 [SPIRES].

  115. A. Bross, The Low-Energy Neutrino Factory: Technical Specification, talk given at IDS-NF plenary meeting in Mumbai, Mumbai India, October 2009.

  116. T. Li, The Low-Energy Neutrino Factory: Physics Performance, talk given at IDS-NF plenary meeting in Mumbai, Mumbai India, October 2009.

  117. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES, Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [SPIRES] http://www.mpi-hd.mpg.de/lin/globes/.

    Article  ADS  Google Scholar 

  118. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [SPIRES].

    Article  ADS  Google Scholar 

  119. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [ar**v:0704.1800] [SPIRES].

    Article  ADS  Google Scholar 

  120. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [ar**v:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  121. R.J. Geller and T. Hara, Geophysical aspects of very long baseline neutrino experiments, Nucl. Instrum. Meth. A 503 (2001) 187 [hep-ph/0111342] [SPIRES].

    Article  ADS  Google Scholar 

  122. T. Ohlsson and W. Winter, The role of matter density uncertainties in the analysis of future neutrino factory experiments, Phys. Rev. D 68 (2003) 073007 [hep-ph/0307178] [SPIRES].

    ADS  Google Scholar 

  123. T. Ota, Bounds to Non-standard Neutrino Interactions, talk given at Madrid Neutrino NSI Workshop, Madrid Spain, December 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meloni, D., Ohlsson, T., Winter, W. et al. Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory. J. High Energ. Phys. 2010, 41 (2010). https://doi.org/10.1007/JHEP04(2010)041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)041

Keywords

Navigation