Log in

Activated physical properties at air-polymer interface

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The surface molecular motion of monodisperse polystyrene (PS) films was examined using scanning viscoelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus,E′, and loss tangent, tanσ, at a PS film surface with number-average molecular weights,M n , smaller than 30 k were found to be smaller and larger than those for the bulk sample, even at room temperature, meaning that the PS surface is in a glass-rubber transition or fully rubbery sate at this temperature when theM n is small. In order to quantitatively elucidate the dynamics of the molecular motion at the PS surface, SVM and LFM measurements were performed at various temperatures. The glass transition temperature,T g , at the surface was found to be markedly lower than the bulkT g , and this discrepancy between the surface and bulk became larger with decreasingM n . Such an intensive activation of the thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinity of the film surface induced by the preferential segregation of the chain end groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Garbassi, M. Morra, and E. Occhiello,Polymer Surfaces, from Physics to Technology, Wiley, Chichester, 1994.

    Google Scholar 

  2. G. Beaucage, R. Composto, and R. S. Stein,J. Polym. Sci., Polym. Phys. Ed.,31, 319 (1993).

    Article  CAS  Google Scholar 

  3. G. Reiter,Europhys. Lett.,23, 579 (1993).

    Article  CAS  Google Scholar 

  4. G. Reiter,Macromolecules,27, 3046 (1994).

    Article  CAS  Google Scholar 

  5. J. L. Keddie, R. A. L. Jones, and R. A. Cory,Europhys. Lett.,27, 59 (1994).

    Article  CAS  Google Scholar 

  6. J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, and J. R. Dutcher,Phys. Rev. Lett.,77, 2002 (1996).

    Article  CAS  Google Scholar 

  7. J. A. Forrest, K. Dalnoki-Veress, and J. R. Dutcher,Phys. Rev. E,58, 6109 (1998).

    Article  CAS  Google Scholar 

  8. T. Kajiyama, K. Tanaka, I. Ohki, S.-R. Ge, J.-S. Yoon, and A. Takahara,Macromolecules,27, 7932 (1994).

    Article  CAS  Google Scholar 

  9. K. Tanaka, A. Taura, S.-R. Ge, A. Takahara, and T. Kajiyama,Macromolecules,29, 3040 (1996).

    Article  CAS  Google Scholar 

  10. T. Kajiyama, K. Tanaka, and A. Takahara,Macromolecules,30, 280 (1997).

    Article  CAS  Google Scholar 

  11. N. Satomi, A. Takahara, and T. Kajiyama,Macromolecules,32, 4474 (1999).

    Article  CAS  Google Scholar 

  12. K. Tanaka, A. Takahara, and T. Kajiyama,Macromolecules,30, 6626 (1997).

    Article  CAS  Google Scholar 

  13. K. Tanaka, X. Jiang, K. Nakamura, A. Takahara, T. Kajiyama, T. Ishizone, A. Hirao, and S. Nakahama,Macromolecules,31, 5148 (1998).

    Article  CAS  Google Scholar 

  14. T. Kajiyama, K. Tanaka, N. Satomi, and A. Takahara,Macromolecules,31, 5150 (1998).

    Article  CAS  Google Scholar 

  15. J. A. Hammerschmidt, B. Moasser, W. L. Gladfelter, G. Haugstad, and R. R. Jones,Macromolecules,29, 8996 (1996).

    Article  CAS  Google Scholar 

  16. R. H. Schmidt, G. Haugstad, and W. L. Gladfelter,Langmuir,15, 317 (1999).

    Article  CAS  Google Scholar 

  17. Y. C. Jean, R. W. Zhang, H. Cao, J. P. Yuan, C.M. Huang, B. Nielsen, and P. Asoka-Kumar,Phys. Rev. B,56, R8459 (1997).

    Article  CAS  Google Scholar 

  18. G. B. DeMaggio, W. E. Frieze, D. W. Gidley, M. Zhu, H. A. Hristov, and A. F. Yee,Phys. Rev. Lett.,78, 1524 (1997).

    Article  CAS  Google Scholar 

  19. Y. M. Boiko and R. E. Prud’homme,J. Polym. Sci., Polym. Phys. Ed.,36, 567 (1998).

    Article  CAS  Google Scholar 

  20. Y. Liu, T. P. Russell, M. G. Samant, J. Stöhr, H. R. Brown, A. Cossy-Favre, and J. Diaz,Macromolecules,30, 7768 (1997).

    Article  CAS  Google Scholar 

  21. K. Minato and T. Takemura,Jpn. J. Appl. Phys.,6, 719 (1967).

    Article  CAS  Google Scholar 

  22. D. G. H. Ballard, G. D. Wignall, and J. Schelten,Eur. Polym. J.,9, 965 (1973).

    Article  CAS  Google Scholar 

  23. N. Saito, K. Okano, S. Iwayanagi, and T. Hideshima,Solid State Physics, Academic Press, New York, 1963, Vol. 14.

    Google Scholar 

  24. T. Fox and P. Flory,J. Polym. Sci.,14, 315 (1954).

    Article  CAS  Google Scholar 

  25. P. Doruker and W. L. Mattice,J. Phys. Chem. B,103, 178 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tisato Kajiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiyama, T. Activated physical properties at air-polymer interface. Macromol. Res. 15, 109–113 (2007). https://doi.org/10.1007/BF03218761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218761

Keywords

Navigation