Log in

Distribution of aromatic biomarkers in pyrolysates of coccolithophore

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

Analyses of the original and pyrolytic products of coccolithophore at various temperatures suggest that the contribution of coccolithophore to the formation of large immature oil reservoirs should attract keen interest. Through biochemical processes algae can change inorganic sulphur into organic sulphur, which could be one of the most important precursors of organic sulphur compounds in oil and source rocks. When Methylphenanthrene Index (MPI) and Methylphenanthrene Ratio (MPR) indices were used to evaluate the evolution degree of source rocks and oil maturity, other maturity indices must be used together for correction. In low maturity, the relative abundances of dibenzothiophene (DBT), fluorine (F) and dibenzofuran (DBF) can be used to identify the oxidation-reduction environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernandez, E., Boyd, P., Holligan, P. M. et al., Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic ocean, Mar. Ecol. Prog. Ser., 1993, 97: 271.

    Article  ADS  Google Scholar 

  2. Teece, M. A., Getlift, J. M., Leftley, J. W. et al., Microbial degradation of the marine prymnesiophyteEmiliania huxleyi under oxic and anoxic conditions as a model for early diagenesis: long chain alkadienes, alkenones and alkyl alkenoates, Org. Geochem., 1998, 29(4): 863.

    Article  CAS  Google Scholar 

  3. Song, Y., Li, S., Experimental study on simulating hydrocarbon-generation of coccolithophoridaes heating, I. Generation rate and property of hydrocarbons, characteristic of alkanes and alkenes, Geological Journal of Universities (in Chinese), 1995, 1: 95.

    CAS  Google Scholar 

  4. Wu, Q., Dai, J., Shiraiwa, Y. et al., A renewable energy sourcehydrocarbon gases resulting from pyrolysis of the marine nanoplanktonic algaEmiliania huxleyi, Journal of Applied Phycology, 1999, 11: 137.

    Article  Google Scholar 

  5. Wu, Q., Shiraiwa, Y., Takeda, H. et al., Liquid-saturated hydrocarbons resulting from pyrolysis of the marine coccolithophoresEmiliania huxleyi andGephyrocapsa oceanica, Mar. Biotechnol., 1999, 1: 346.

    Article  CAS  Google Scholar 

  6. Zhang, L., Zhang, C., The Basic Law of the Generation, Migration and Accumulation of Immature Oil (in Chinese), Bei**g: Geological Publishing House, 1999, 27–57.

    Google Scholar 

  7. Okaichi, T., Nishino, S., Imatomi, Y., Collection and Mass Culture of Toxic Phytoplankton—Occurrence, Mode of Action, and Toxin (ed. Society of Science of Fisheries), Tokyo: Kouseisha-Kouseikaku, 1982, 23–34.

    Google Scholar 

  8. Wang, R., Zhou, W., Dai, J. et al., Identification of long chain isoprenoid hydrocarbons from pyrolytic product ofDunaliella, Chinese Science Bulletin, 1999, 44(18): 1700.

    Article  ADS  CAS  Google Scholar 

  9. Radke, M., Rullkotter, J., Vriend, S. P., Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects, Geochim. Cosmochim., 1994, 58: 3675.

    Article  ADS  CAS  Google Scholar 

  10. Killops, S. D., Novel aromatic hydrocarbons of probably bacterial origin in a Jurassic Lacustrine sequence, Org. Geochem., 1991, 17(1): 25.

    Article  CAS  Google Scholar 

  11. Hou, D., Wang, T., Approach to Terrestrial Petroleum Geochemistry (in Chinese), Bei**g: China University of Geosciences Press, 1995, 25–31; 88–95.

    Google Scholar 

  12. Radke, M., Weite, D. H., Wilisch, H., Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter, Geochim. Cosmochim., 1981, 46: 1.

    Article  ADS  Google Scholar 

  13. Wang, T., Zhong, N., Hou, D. et al., The Low Maturity Petroleum Formation Mechanism and Occurrence (in Chinese), Bei**g: Petroleum Industry Press, 1995, 52–62.

    Google Scholar 

  14. Sinninghe Damaste, J. S., Rupstra, W. I. C., de Leeuw, J. W. et al., The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts, II. Their presence in samples from hypersaline and non-hypersaline palaeoenvironments and possible application as source, palaeoenvironments and maturity indicators, Geochim. Cosmochim., 1989, 53: 1323.

    Article  ADS  Google Scholar 

  15. Sinninghe Damaste, J. S., Math, E. L. K., Brian, H., Origin of low-molecular-weight alkylthiophenes in pyrolysates of sulphurrich kerogens as revealed by micro-scale sealed vessel pyrolysis, Org. Geochem., 1998, 29(8): 1891.

    Article  Google Scholar 

  16. Erdman, J. G., Some chemical aspects of petroleum genesis as revealed to the problem of source bed recognition, Geochem. Cosmochim. Acta, 1961, 22: 16.

    Article  ADS  CAS  Google Scholar 

  17. Langworthy, D. N., Tornabene, T. G., Holzer, G., Lipids of archaebacteria, Zbl. Bakt. Hyg., 1982, 3: 228.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhou.

About this article

Cite this article

Zhou, W., Wu, Q., Wang, R. et al. Distribution of aromatic biomarkers in pyrolysates of coccolithophore. Chin.Sci.Bull. 46, 246–252 (2001). https://doi.org/10.1007/BF03187179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187179

Keywords

Navigation