Log in

Analysis of metabolite profile data using batch-learning self-organizing maps

  • Report
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Novel tools are needed for efficient analysis and visualization of the massive data sets associated with metabolomics. Here, we describe a batch-learning self-organizing map (BL-SOM) for metabolome informatics that makes the learning process and resulting map independent of the order of data input. This approach was successfully used in analyzing and organizing the metabolome data forArabidopsis thaliana cells cultured under salt stress. Our 6 × 4 matrix presented patterns of metabolite levels at different time periods. A negative correlation was found between the levels of amino acids and metabolites related to glycolysis metabolism in response to this stress. Therefore, BL-SOM could be an excellent tool for clustering and visualizing high dimensional, complex metabolome data in a single map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Literature Cited

  • Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T (2003) Informatics for unveiling hidden genome signatures. Genome Res13: 693–702

    Article  PubMed  CAS  Google Scholar 

  • Abe T, Sugawara H, Kanaya S, Kinouchi M, Ikemura T (2006) Self-Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes. Gene365: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Ben-Izhak Monselise E, Parola AH, Kost D (2003) Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem Bio-phys Res Commun302: 427–434

    Article  Google Scholar 

  • Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol48: 155–171

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol18: 1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Fukusaki E, Kobayashi A (2005) Plant metabolomics: Potential for practical operation. J Biosci Bioengr100: 347–354

    Article  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses inArabidopsis thaliana. Proc Natl Acad Sci USA101: 10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, Mori H, Ikemura T (2001) Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): Characterization of horizontally transferred genes with emphasis on theE. coli O157 genome. Gene276: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling inArabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot58: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern43: 59–69

    Article  Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc IEEE78: 1464–1480

    Article  Google Scholar 

  • Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE84: 1358–1384

    Article  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenoty** of genetically or environmentally modified plant systems. Plant Cell13: 11–29

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Urbanczyk-Wochniak E, Czechowski T, Kolbe A, Willmitzer L, Fernie AR (2003) De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol133: 683–692

    Article  Google Scholar 

  • Sumner LW, Mendes R Dixon RA (2003) Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry62: 817–836

    Article  PubMed  CAS  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics: Large-scale profiling of tomato fruit volatiles. Plant Physiol139: 1125–1137

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kwang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Cho, M.R., Baek, H.J. et al. Analysis of metabolite profile data using batch-learning self-organizing maps. J. Plant Biol. 50, 517–521 (2007). https://doi.org/10.1007/BF03030693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030693

Keywords

Navigation