Log in

Ethylene and indole-3-Acetic Acid participate in the in-rolling and opening of carnation petal segments

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We have examined the inward-rolling and outward-opening of petals from 90° stage carnation flowers (Dianthus charyophyllus L. cv. Pink Donor). Ethylene released from 2-chloroethylphosphonic acid (CEPA) induced in-rolling in the lower portions of the petals while that action was suppressed by an inhibitor of auxin transport. Another plant hormone, indole-3-acetic acid (IAA), intensified this ethylene-induced in-rolling. In contrast, when ethylene was not applied, the same IAA concentration promoted the opening of petal segments. Our data suggest that a low level of ethylene acts on IAA-induced opening. Likewise, we can speculate that endogenous concentrations of ethylene could be an important determinant of petal responses that involve interactions between ethylene and IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in Plant Biology, Ed 2. Academic Press, San Diego

    Google Scholar 

  • Baskin TI, Beemster GTS, Judy-March JE, Marga F (2004) Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root ofArabidopsis. Plant Physiol135: 2279–2290

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Malenica N, Luschnig C (2005) Regulating the regulator: The control of auxin transport. Bioessays27: 1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm. Plant Physiol116: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewaka J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism inArabidopsis. Nature415: 806–809

    PubMed  Google Scholar 

  • In BC (2001) Effect of 1-methylcyclopropane (1-MCP) on the Retardation of Senescence in Cut Flowers of Hibiscus and Carnation. M.S. thesis, KonkukUniversity, Seoul

  • Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato K (2000) Cloning of an auxin-responsive1-aminocyclopropane-1-carboxylate synthase gene (GMe-ACS2) from melon and the expression ofACS genes in etiolated melon seedlings and melon fruits. Plant Sci159: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Kim ES, Son KC, Lee SH, Oh SE (1998) The in-rolling phenomena of petals during senescence in cut carnation (Dianthus caryophyllus L. cv. Shinkibo). J Plant Biol41: 304–311

    Article  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996)HOOKLESS1, an ethylene response gene, is required for differential cell elongation in theArabidopsis hypocotyls. Cell85: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Mor Y, Halevy AH, Spiegelstein H, Mayak S (1985) The site of 1aminocyclopropane-1-carboxylic acid synthesis in senescing carnation petals. Physiol Plant65: 196–202

    Article  CAS  Google Scholar 

  • Nam KH, Song YJ, Joo JH, Ryu HY, Lee JS, Bae YS (2007) Reactive oxygen species mediate IAA-induced ethylene production in mungbean (Vigna radiata L.) hypocotyls. J Plant Biol50: 18–23

    Article  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimia H (2003)p-Chlorophenoxyisobutyric acid impairs auxin response inArabidopsis root. Plant Physiol133: 1135–1147

    Article  PubMed  CAS  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth0’s gravitational field induces cytosolic calcium transients. Plant Physiol129: 786–796

    Article  PubMed  CAS  Google Scholar 

  • Poupart J, Rashote AM, Muday GK, Waddell CS (2005) The rib1 mutant ofArabidopsis has alterations in indole-3-butyric acid transport, hypocotyls elongation, and root architecture. Plant Physiol139: 1460–1471

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Satoko Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions duringArabidopsis root hair development dissected by auxin influx modulators. Plant Physiol130: 1908–1917

    Article  PubMed  CAS  Google Scholar 

  • Strydom GJ, Whitehead CS (1990) The effect of ionizing radiation on ethylene sensitivity and post-harvest ripening of banana fruit. Sci Hortic41: 293–304

    Article  CAS  Google Scholar 

  • Taguchi G, Yoshizwa K, Kodaira R, Hayashida N, Okazaki M (2001) Plant hormone regulation on scopoletin metabolism from culture medium into tobacco cells. Plant Sci160: 905–911

    Article  PubMed  CAS  Google Scholar 

  • Taiz L (1984) Plant cell expansion: Regulation of cell wall mechanical properties. Annu Rev Plant Physiol35: 585–657

    Article  CAS  Google Scholar 

  • Takahashi H, Kawahara A, Inoue Y (2003) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol44: 932–940

    Article  PubMed  CAS  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport inArabidopsis thaliana roots. Plant Cell17:2922–2939

    Article  PubMed  CAS  Google Scholar 

  • Ursin VM, Bradford KJ (1989) Auxin and ethylene regulation of petiole epinasty in two developmental mutants of tomato,diageotropica andepinastic. Plant Physiol90: 1341–1346

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJJ, Harren FJM, van der Straeten D (2003) Ethylene and auxin control theArabidopsis response to decreased light intensity. Plant Physiol133: 517–527

    Article  PubMed  CAS  Google Scholar 

  • Whitehead CS, Vasiljevic D (1993) Role of short chain saturated fatty acid in the control of ethylene sensitivity in senescing carnation flowers. Physiol Plant88: 243–250

    Article  CAS  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX 1 influx carrier protein. Curr Biol16: 1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules from transverse to longitudinal in living plant cells. Proc Natl Acad Sci USA91: 6050–6053

    Article  PubMed  CAS  Google Scholar 

  • Zhang XS, O'Neill SD (1993) Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell5: 403–418

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Eun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doh, E.J., An, W.G., Son, KC. et al. Ethylene and indole-3-Acetic Acid participate in the in-rolling and opening of carnation petal segments. J. Plant Biol. 50, 174–180 (2007). https://doi.org/10.1007/BF03030627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030627

Keywords

Navigation