Log in

Integrative biology in the discovery of relevant biomarkers monitoring cognitive disorders pathogenesis and progression

La biologie intégrative dans la découverte de biomarqueurs spécifiques au suivi de la pathogénèse de désordres cognitifs et leur évolution

  • Dossier
  • Revue
  • Published:
Bio Tribune Magazine

Abstract

Cognitive disorders are highly heterogeneous in terms of symptoms, clinical aetiologies, disease progression and therapeutic responses. Furthermore, their potential biological causes remain largely unknown. Progress at these different levels is currently mired in a vicious circle. The identification of coherent biomarkers, essential for clinical and therapeutic progress, requires an understanding of either the relevant pathogenic processes or, at the very least, of the parameters that need to be monitored. But, syndrome-dominated conceptual thinking has become a barrier to understanding the biological processes linked to diseases characterized by clinical and therapeutic heterogeneity. As a result, current biomarkers of cognitive disorders are much too numerous, too heterogeneous and too variable to serve useful purposes. This leads to an untenable situation that precludes coherent therapeutic developments since it effectively prevents defining what could constitute valid biological, clinical and therapeutic approaches. How to escape from this situation? The problem could be partly resolved by adopting the much wider views allowed by “system-wide” approaches: indeed, by constructing predictive theoretical models of what could constitute pathological cognitive processes. This, naturally, shall require the integration of massive amounts of highly heterogeneous and often conflicting information. The following article aims to provide a necessarily brief overview of the concepts, the breadth of data and the variety of network dynamics that will have to be considered while proposing a functional modelbuilding approach, experimentally validated in vitro and in vivo, that could be fruitfully utilised.

Résumé

Les désordres cognitifs sont caractérisés par une extrême hétérogénéité en termes de symptômes, de présentation clinique, de progression pathologique et de réponses thérapeutiques. De plus, leurs causes restent très largement inconnues. Aujourd’hui, les progrès dans ces différents domaines sont embourbés dans un cercle vicieux. L’identification de biomarqueurs cohérents, essentiels à tout progrès clinique et thérapeutique, requiert, sinon une compréhension des processus pathogéniques, à tout le moins une identification des paramètres qui devront faire l’objet d’un suivi dans un cadre défini. Mais les approches conceptuelles, aujourd’hui largement dominées par la « syndromologie » sont de fait devenues des barrières à la compréhension des processus biologiques liés aux maladies caractérisées par une hétérogénéité clinique et thérapeutique. II en résulte que les biomarqueurs disponibles dans le domaine des maladies cognitives sont bien trop nombreux, trop hétérogènes et trop variables pour être utiles. Ceci entraîne une situation intenable où tout développement thérapeutique cohérent est très largement compromis par le fait qu’il devient impossible de définir ce qui pourrait constituer des approches biologiques, cliniques et thérapeutiques valides. Comment échapper à cette situation ? Le problème pourrait être en partie résolu par l’adoption de la vision très large que permettent les approches systémiques. En d’autres termes, par la construction de modèles théoriques prédictifs représentant des mécanismes pouvant constituer des processus cognitifs pathologiques. Pour ce faire, il sera bien entendu nécessaire d’intégrer des masses énormes d’informations souvent contradictoires. Le présent article a pour but de dresser un inventaire nécessairement succinct des concepts, de la diversité de données et des dynamiques de réseaux qui devront être prises en compte tout en proposant une méthode fonctionnelle de modélisation, validée expérimentalement in vitro et in vivo, qui pourrait être ici mise à profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

/+/ Références

  1. Group B (2001) Biomarkers, surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 3: 89–95

    Google Scholar 

  2. Ravina BM, Fagan SC, Hart RG, et al. (2003) Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology 8: 1234–40

    Google Scholar 

  3. Bohnen NI, Frey KA (2003) The role of positron emission tomography imaging in movement disorders. Neuroimaging Clin N Am 4: 791–803

    Article  Google Scholar 

  4. Couderc R (2000)[Search of biological markers of Alzheimer’s disease] Ann Biol Clin (Paris) 5: 581–93

    Google Scholar 

  5. Nurmi E, Bergman J, Eskola O, et al. (2003) Progression of dopaminergic hypofunction in striatal subregions in Parkinson’s disease using [18F]CFT PET. Synapse 3: 109–15

    Article  CAS  Google Scholar 

  6. Rovaris M, Comi G, Ladkani D, et al. (2003) Short-term correlations between clinical and MR imaging findings in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 1: 75–81

    Google Scholar 

  7. Tardif JC, Heinonen T, Orloff D, et al. (2006) Vascular biomarkers and surrogates in cardiovascular disease. Circulation 25: 2936–42

    Article  Google Scholar 

  8. McIntyre RS, Fallu A, Konarski JZ (2006) Measurable outcomes in psychiatric disorders: remission as a marker of wellness. Clin Ther 11: 1882–91

    Article  Google Scholar 

  9. Malhi GS, Green M, Fagiolini A, et al. (2008) Schizoaffective disorder: diagnostic issues and future recommendations. Bipolar Disord 1 Pt 2: 215–30

    Google Scholar 

  10. Calhoun VD, Maciejewski PK, Pearlson GD, et al. (2007) Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp

  11. Owen MJ, Craddock N, Jablensky A (2007) The genetic deconstruction of psychosis. Schizophr Bull 4: 905–11

    Article  Google Scholar 

  12. Craddock N, O’Donovan MC, Owen MJ (2006) Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 1: 9–16

    Google Scholar 

  13. Stoltenberg SF, Burmeister M (2000) Recent progress in psychiatric genetics-some hope but no hype. Hum Mol Genet 6: 927–35

    Article  Google Scholar 

  14. van Belzen MJ, Heutink P (2006) Genetic analysis of psychiatric disorders in humans. Genes Brain Behav 5 Suppl 2: 25–33

    Article  PubMed  CAS  Google Scholar 

  15. Mundo E (2006) Neurobiology of dynamic psychotherapy: an integration possible? J Am Acad Psychoanal Dyn Psychiatry 4: 679–91

    Article  Google Scholar 

  16. Belgamwar RB, Fenton M (2005) Olanzapine IM or velotab for acutely disturbed/agitated people with suspected serious mental illnesses. Cochrane Database Syst Rev 2: CD003729

  17. Bogenschutz MP, Geppert CM, George J (2006) The role of twelvestep approaches in dual diagnosis treatment and recovery. Am J Addict 1: 50–60

    Article  Google Scholar 

  18. Carpenter S, Berk M, Rathbone J (2004) Clotiapine for acute psychotic illnesses. Cochrane Database Syst Rev 4: CD002304

  19. Cheung E, Wong V, Fung CW (2005) Topiramate-valproate-induced hyperammonemic encephalopathy syndrome: case report. J Child Neurol 2: 157–60

    Article  Google Scholar 

  20. Gillies D, Beck A, McCloud A, et al. (2005) Benzodiazepines alone or in combination with antipsychotic drugs for acute psychosis. Cochrane Database Syst Rev 4: CD003079

  21. Segura-Bruna N, Rodriguez-Campello A, Puente V, et al. (2006) Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand 1: 1–7

    Article  CAS  Google Scholar 

  22. Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157: 81–104

    PubMed  CAS  Google Scholar 

  23. Aderem A (2005) Systems biology: its practice and challenges. Cell 4: 511–3

    Article  CAS  Google Scholar 

  24. Kitano H (2007) The theory of biological robustness and its implication in cancer. Ernst Schering Res Found Workshop 61: 69–88

    Article  PubMed  CAS  Google Scholar 

  25. Savageau MA (1969) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 3: 365–9

    Article  Google Scholar 

  26. Savageau MA (1969) Biochemical systems analysis. II. The steadystate solutions for an n-pool system using a power-law approximation. J Theor Biol 3: 370–9

    Article  Google Scholar 

  27. Goel G, Chou IC, Voit EO (2006) Biological systems modeling and analysis: a biomolecular technique of the twenty-first century. J Biomol Tech 4: 252–69

    Google Scholar 

  28. Gilbert D, Fuss H, Gu X, et al. (2006) Computational methodologies for modelling, analysis and simulation of signalling networks. Brief Bioinform 4: 339–53

    Article  Google Scholar 

  29. Dwyer JH, Allayee H, Dwyer KM, et al. (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 1: 29–37

    Article  Google Scholar 

  30. Edwards AO, Ritter R 3rd,Abel KJ, et al. (2005) Complement factor H polymorphism and age-related macular degeneration. Science 5720: 421–4

    Article  CAS  Google Scholar 

  31. Florez JC, Jablonski KA, Bayley N, et al. (2006) TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 3: 241–50

    Article  Google Scholar 

  32. Herbert A, Gerry NP, McQueen MB, et al. (2006) A common genetic variant is associated with adult and childhood obesity. Science 5771: 279–83

    Article  CAS  Google Scholar 

  33. Lander AD (2007) Morpheus unbound: reimagining the morphogen gradient. Cell 2: 245–56

    Article  CAS  Google Scholar 

  34. Schadt EE, Lamb J, Yang X, et al. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 7: 710–7

    Article  CAS  Google Scholar 

  35. Albeck JG, MacBeath G, White FM, et al. (2006) Collecting and organizing systematic sets of protein data. Nat Rev Mol Cell Biol 11: 803–12

    Article  CAS  Google Scholar 

  36. Hua F, Hautaniemi S, Yokoo R, et al. (2006) Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways. J R Soc Interface 9: 515–26

    Article  Google Scholar 

  37. Janes KA, Yaffe MB (2006) Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 11: 820–8

    Article  CAS  Google Scholar 

  38. Stromback L, Jakoniene V, Tan H, et al. (2006) Representing, storing and accessing molecular interaction data: a review of models and tools. Brief Bioinform 4: 331–8

    Article  Google Scholar 

  39. Wolkenhauer O, Mesarovic M, Wellstead P (2007) A plea for more theory in molecular biology. Ernst Schering Res Found Workshop 61: 117–37

    Article  PubMed  CAS  Google Scholar 

  40. Gadal F, Bozic C, Pillot-Brochet C, et al. (2003) Integrated transcriptome analysis of the cellular mechanisms associated with Ha-ras-dependent malignant transformation of the human breast epithelial MCF7 cell line. Nucleic Acids Res 19: 5789–804

    Article  CAS  Google Scholar 

  41. Gadal F, Starzec A, Bozic C, et al. (2005) Integrative analysis of gene expression patterns predicts specific modulations of defined cell functions by estrogen and tamoxifen in MCF7 breast cancer cells. J Mol Endocrinol 1: 61–75

    Article  CAS  Google Scholar 

  42. Gottesman II, Shields J. (1973) Genetic theorizing and schizophrenia. Br J Psychiatry 566: 15–30

    Article  Google Scholar 

  43. Gottesman II, Erlenmeyer-Kimling L (2001) Family, twin strategies as a head start in defining prodromes and endophenotypes for hypothetical early-interventions in schizophrenia. Schizophr Res 1: 93–102

    Article  Google Scholar 

  44. Hariri AR, Weinberger DR (2003) Functional neuroimaging of genetic variation in serotonergic neurotransmission. Genes Brain Behav 6: 341–9

    Article  Google Scholar 

  45. Heinrichs RW (2005) The primacy of cognition in schizophrenia. Am Psychol 60(3): 229–42

    Article  PubMed  Google Scholar 

  46. Weinberger DR, Egan MF, Bertolino A, et al. (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 11: 825–44

    Article  Google Scholar 

  47. Ahearn EP, Speer MC, Chen YT, et al. (2002) Investigation of Notch3 as a candidate gene for bipolar disorder using brain hyperintensities as an endophenotype. Am J Med Genet 6: 652–8

    Article  Google Scholar 

  48. Glahn DC, Bearden CE, Niendam TA, et al. (2004) The feasibility of neuropsychological endophenotypes in the search for genes associated with bipolar affective disorder. Bipolar Disord 3: 171–82

    Article  Google Scholar 

  49. Lenox RH, Gould TD, Manji HK (2002) Endophenotypes in bipolar disorder. Am J Med Genet 114(4): 391–406

    Article  PubMed  Google Scholar 

  50. Hasler G, Drevets WC, Manji HK, et al. (2004) Discovering endophenotypes for major depression. Neuropsychopharmacology 10: 1765–81

    Article  CAS  Google Scholar 

  51. Niculescu AB 3rd,Akiskal HS (2001) Proposed endophenotypes of dysthymia: evolutionary, clinical and pharmacogenomic considerations. Mol Psychiatry 4: 363–6

    Article  Google Scholar 

  52. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 8: 617–28

    Google Scholar 

  53. Doyle AE, Willcutt EG, Seidman LJ, et al. (2005) Attention-deficit/hyperactivity disorder endophenotypes. Biol Psychiatry 11: 1324–35

    Article  CAS  Google Scholar 

  54. Gould TD, Bastain TM, Israel ME, et al. (2001) Altered performance on an ocular fixation task in attention-deficit/hyperactivity disorder. Biol Psychiatry 8: 633–5

    Article  Google Scholar 

  55. Waldman ID (2005) Statistical approaches to complex phenotypes: evaluating neuropsychological endophenotypes for attention-deficit/hyperactivity disorder. Biol Psychiatry 11: 1347–56

    Article  Google Scholar 

  56. Chamberlain SR, Blackwell AD, Fineberg NA, et al. (2005) The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 3: 399–419

    Article  Google Scholar 

  57. Miguel EC, Leckman JF, Rauch S, et al. (2005) Obsessive-compulsive disorder phenotypes: implications for genetic studies. Mol Psychiatry 3: 258–75

    Article  CAS  Google Scholar 

  58. Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 2: 113–9

    Article  Google Scholar 

  59. Braff DL, Freedman R, Schork NJ, et al. (2007) Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 1: 21–32

    Google Scholar 

  60. Broekman BF, Olff M, Boer F (2007) The genetic background to PTSD. Neurosci Biobehav Rev 3: 348–62

    Article  CAS  Google Scholar 

  61. Calkins ME, Dobie DJ, Cadenhead KS, et al. (2007) The Consortium on the Genetics of Endophenotypes in Schizophrenia: model recruitment, assessment, and endophenoty** methods for a multisite collaboration. Schizophr Bull 1: 33–48

    Google Scholar 

  62. Blumenthal HT (2001) Milestone or genomania? The relevance of the Human Genome Project to biological aging and the age-related diseases. J Gerontol A Biol Sci Med Sci 9: M529–37

    Google Scholar 

  63. Futterman LG, Lemberg L (2001) The mysteries of the human genome uncovered—medicine is changed forever. Am J Crit Care 2: 125–32

    Google Scholar 

  64. Gerling JC, Solomon SS, Bryer-Ash M (2003) Genomes, transcriptomes, and proteomes: molecular medicine and its impact on medical practice. Arch Intern Med 2: 190–8

    Article  Google Scholar 

  65. Hata A (2002) [Human genome and made-to-order health care system]. Hokkaido Igaku Zasshi 1: 13–6

    Google Scholar 

  66. Kannabiran C, Panicker SG (2002) Of genes and disease. Indian J Ophthalmol 1: 2–3

    Google Scholar 

  67. Tanaka T (2002) [Identification of common disease related genes by means of genome-wide SNP ty**], Gan To Kagaku Ryoho 8: 1479–83

    Google Scholar 

  68. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 3–4: 533–7

    Article  Google Scholar 

  69. Gygi SP, Rochon Y, Franza BR, et al. (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 3: 1720–30

    Google Scholar 

  70. McGregor E, Dunn MJ (2006) Proteomics of the heart: unraveling disease. Circ Res 3: 309–21

    Article  CAS  Google Scholar 

  71. Collinson N, Kuenzi FM, Jarolimek W, et al. (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 13: 5572–80

    Google Scholar 

  72. Enz R (2007) The trick of the tail: protein-protein interactions of metabotropic glutamate receptors. Bioessays 1: 60–73

    Article  CAS  Google Scholar 

  73. Jovanovic JN, Thomas P, Kittler JT, et al. (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J Neurosci 2: 522–30

    Article  CAS  Google Scholar 

  74. Mody I (2005) Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition. J Physiol Pt 1: 37–46

    Google Scholar 

  75. Qiu J, Bosch MA, Tobias SC, et al. (2003) Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J Neurosci 29: 9529–40

    Google Scholar 

  76. Sinagra M, Verrier D, Frankova D, et al. (2005) Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J Neurosci 26: 6127–36

    Article  CAS  Google Scholar 

  77. Bungartz G, Stiller S, Bauer M, et al. (2006) Adult murine hematopoiesis can proceed without beta1 and beta7 integrins. Blood 6: 1857–64

    Article  CAS  Google Scholar 

  78. Hosl K, Reinold H, Harvey RJ, et al. (2006) Spinal prostaglandin E receptors of the EP2 subtype and the glycine receptor alpha3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection. Pain 1–3: 46–53

    Article  CAS  Google Scholar 

  79. Kalkonde YV, Morgan WW, Sigala J, et al. (2007) Chemokines in the MPTP model of Parkinson’s disease: absence of CCL2 and its receptor CCR2 does not protect against striatal neurodegeneration. Brain Res 1: 1–11

    Article  CAS  Google Scholar 

  80. Knobeloch KP, Utermohlen O, Kisser A, et al. (2005) Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol 24: 11030–4

    Article  CAS  Google Scholar 

  81. Leaf I, Tennessen J, Mukhopadhyay M, et al. (2006) Sfrp5 is not essential for axis formation in the mouse. Genesis 12: 573–8

    Article  CAS  Google Scholar 

  82. Scarff KL, Ung KS, Nandurkar H, et al. (2004) Targeted disruption of SPI3/Serpinb6 does not result in developmental or growth defects, leukocyte dysfunction, or susceptibility to stroke. Mol Cell Biol 9: 4075–82

    Article  CAS  Google Scholar 

  83. Sentman ML, Granstrom M, Jakobson H, et al. (2006) Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J Biol Chem 11: 6904–9

    Article  CAS  Google Scholar 

  84. Spazierer D, Fuchs P, Reipert S, et al. (2006) Epiplakin is dispensable for skin barrier function and for integrity of keratin network cytoarchitecture in simple and stratified epithelia. Mol Cell Biol 2: 559–68

    Article  CAS  Google Scholar 

  85. Hashimoto S, Huang Y, Mizel D, et al. (2004) Compensation of proximal tubule malabsorption in AQP1-deficient mice without TGF-mediated reduction of GFR. Acta Physiol Scand 4: 455–62

    Article  Google Scholar 

  86. Kobsar I, Oetke C, Kroner A, et al. (2006) Attenuated demyelination in the absence of the macrophage-restricted adhesion molecule sialoadhesin (Siglec-1) in mice heterozygously deficient in P0. Mol Cell Neurosci 4: 685–91

    Article  CAS  Google Scholar 

  87. Parlato R, Rieker C, Turiault M, et al. (2006) Survival of DA neurons is independent of CREM upregulation in absence of CREB. Genesis 10: 454–64

    Article  CAS  Google Scholar 

  88. Puolakkainen PA, Bradshaw AD, Brekken RA, et al. (2005) SPARC-thrombospondin-2-double-null mice exhibit enhanced cutaneous wound healing and increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges. J Histochem Cytochem 5: 571–81

    Article  CAS  Google Scholar 

  89. Coppola G, Choi SH, Santos MM, et al. (2006) Gene expression profiling in frataxin deficient mice: microarray evidence for significant expression changes without detectable neurodegeneration. Neurobiol Dis 2: 302–11

    Article  CAS  Google Scholar 

  90. de Caprona MD, Beisel KW, Nichols DH, et al. (2004) Partial behavioral compensation is revealed in balance tasked mutant mice lacking otoconia. Brain Res Bull 4: 289–301

    Google Scholar 

  91. Gottsch ML, Zeng H, Hohmann JG, et al. (2005) Phenotypic analysis of mice deficient in the type 2 galanin receptor (GALR2). Mol Cell Biol 11: 4804–11

    Article  CAS  Google Scholar 

  92. Xu J, Gowen L, Raphalides C, et al. (2006) Decreased hepatic futile cycling compensates for increased glucose disposal in the Pten heterodeficient mouse. Diabetes 12: 3372–80

    Article  CAS  Google Scholar 

  93. Abou Jamra R, Schmael C, Cichon S, et al. (2006) The G72/G30 gene locus in psychiatric disorders: a challenge to diagnostic boundaries? Schizophr Bull 4: 599–608

    Google Scholar 

  94. Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 2: 106–14

    Article  CAS  Google Scholar 

  95. Fortune MT, Kennedy JL, Vincent JB (2003) Anticipation and CAG*CTG repeat expansion in schizophrenia and bipolar affective disorder. Curr Psychiatry Rep 2: 145–54

    Article  Google Scholar 

  96. Tsutsumi T, Holmes SE, McInnis MG, et al. (2004) Novel CAG/CTG repeat expansion mutations do not contribute to the genetic risk for most cases of bipolar disorder or schizophrenia. Am J Med Genet B Neuropsychiatr Genet 1: 15–9

    Article  Google Scholar 

  97. Williams NM, Green EK, Macgregor S, et al. (2006) Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. Arch Gen Psychiatry 4: 366–73

    Article  Google Scholar 

  98. Cote GB, Gyftodimou J (1991) Twinning and mitotic crossing-over: some possibilities and their implications. Am J Hum Genet 1: 120–30

    Google Scholar 

  99. Fraga MF, Ballestar E, Paz MF, et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 30: 10604–9

    Article  CAS  Google Scholar 

  100. Oates NA, van Vliet J, Duffy DL, et al. (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 1: 155–62

    Article  Google Scholar 

  101. Petronis A, Gottesman II, Kan P, et al. (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 1: 169–78

    Google Scholar 

  102. Singh SM, Murphy B, O’Reilly R (2002) Epigenetic contributors to the discordance of monozygotic twins. Clin Genet 2: 97–103

    Article  Google Scholar 

  103. Camp NJ, Lowry MR, Richards RL, et al. (2005) Genome-wide linkage analyses of extended Utah pedigrees identifies loci that influence recurrent, early-onset major depression and anxiety disorders. Am J Med Genet B Neuropsychiatr Genet 1: 85–93

    Google Scholar 

  104. Kendler KS, Zerbin-Rudin E (1996) Abstract and review of “Studien Uber Vererbung und Entstehung Geistiger Storungen. I. Zur Vererbung und Neuentstehung der Dementia praecox.” (Studies on the inheritance and origin of mental illness: I. To the problem of the inheritance and primary origin of dementia praecox). 1916. Am J Med Genet 4: 338–42

    Article  Google Scholar 

  105. Maher BS, Marazita ML, Zubenko WN, et al. (2002) Genetic segregation analysis of alcohol and other substance-use disorders in families with recurrent, early-onset major depression. Am J Drug Alcohol Abuse 4: 711–31

    Article  Google Scholar 

  106. Zubenko GS, Maher BS, Hughes HB 3rd, et al. (2004) Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 1: 47–54

    Article  Google Scholar 

  107. Cannon TD, van Erp TG, Bearden CE, et al. (2003) Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment, and their interactions. Schizophr Bull 4: 653–69

    Google Scholar 

  108. Courchesne E, Redcay E, Kennedy DP (2004) The autistic brain: birth through adulthood. Curr Opin Neurol 4: 489–96

    Article  Google Scholar 

  109. Hazlett HC, Poe M, Gerig G, et al. (2005) Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 12: 1366–76

    Article  Google Scholar 

  110. Larsson HJ, Eaton WW, Madsen KM, et al. (2005) Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol 10: 916–25; discussion 926–8

    Article  Google Scholar 

  111. Pantelis C, Yucel M, Wood SJ, et al. (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 3: 672–96

    Article  Google Scholar 

  112. Rapoport JL, Addington AM, Frangou S, et al. (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 5: 434–49

    Article  CAS  Google Scholar 

  113. Shenton ME, Dickey CC, Frumin M, et al. (2001) A review of MRI findings in schizophrenia. Schizophr Res 1–2: 1–52

    Article  Google Scholar 

  114. Lochner K, Gaemlich A, Sudel KM, et al. (2007) Expression of decorin and collagens I and III in different layers of human skin in vivo: a laser capture microdissection study. Biogerontology 3: 269–82

    Article  CAS  Google Scholar 

  115. Pearce DJ, Anjos-Afonso F, Ridler CM, et al. (2007) Age-dependent increase in side population distribution within hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells 4: 828–35

    Article  CAS  Google Scholar 

  116. Shames DS, Minna JD, Gazdar AF (2007) DNA methylation in health, disease, and cancer. Curr Mol Med 1: 85–102

    Article  Google Scholar 

  117. Popesco MC, Lin S, Wang Z, et al. (2007) Serial analysis of gene expression profiles of adult and aged mouse cerebellum. Neurobiol Aging

  118. Shen S, Liu A, Li J, et al. (2008) Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol Aging 3: 452–63

    Article  CAS  Google Scholar 

  119. Bischof G, Rumpf HJ, Meyer C, et al. (2005) Influence of psychiatric comorbidity in alcohol-dependent subjects in a representative population survey on treatment utilization and natural recovery. Addiction 3: 405–13

    Article  Google Scholar 

  120. Klingemann KH, Efionayi-Mader D (1994) [How much treatment does a person need? Addiction, spontaneous remission and “family” as biographical as leitmotiv]. Schweiz Rundsch Med Prax 34: 937–49

    Google Scholar 

  121. Lambert W, Bickman L (2004) Child & adolescent psychiatry: the “clock-setting” cure: how children’s symptoms might improve after ineffective treatment. Psychiatr Serv 4: 381–2

    Article  Google Scholar 

  122. Sekine Y (2005) [Consideration of the concepts of “remission” and “cured” in schizophrenia: a male case who experienced schizophrenia with psycho-motoric excitation 30 years ago]. Seishin Shinkeigaku Zasshi 11: 1159–68

    Google Scholar 

  123. Weiss B, Catron T, Harris V (2000) A 2-year follow-up of the effectiveness of traditional child psychotherapy. J Consult Clin Psychol 6: 1094–101

    Google Scholar 

  124. Alonso J, Angermeyer MC, Bernert S, et al. (2004) Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand Suppl 420: 21–7

    PubMed  Google Scholar 

  125. Eaton WW, Kramer M, Anthony JC, et al. (1989) The incidence of specific DIS/DSM-III mental disorders: data from the NIMH Epidemiologic Catchment Area Program. Acta Psychiatr Scand 2: 163–78

    Article  Google Scholar 

  126. Kessler RC, McGonagle KA, Zhao S, et al. (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1: 8–19

    Google Scholar 

  127. Klerman GL, Weissman MM, Ouellette R, et al. (1991) Panic attacks in the community. Social morbidity and health care utilization. JAMA 6: 742–6

    Article  Google Scholar 

  128. Kaariainen TM, Lehtonen M, Forsberg MM, et al. (2008) Comparison of the effects of deramciclane, ritanserin and buspirone on extracellular dopamine and its metabolites in striatum and nucleus accumbens of freely moving rats. Basic Clin Pharmacol Toxicol 1: 50–8

    Google Scholar 

  129. Escobar JI, Gureje O (2007) Influence of cultural and social factors on the epidemiology of idiopathic somatic complaints and syndromes. Psychosom Med 9: 841–5

    Article  Google Scholar 

  130. Moffitt TE, Harrington H, Caspi A, et al. (2007) Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years. Arch Gen Psychiatry 6: 651–60

    Article  Google Scholar 

  131. Warner V, Wickramaratne P, Weissman MM (2008) The role of fear and anxiety in the familial risk for major depression: a three-generation study. Psychol Med: 1–14

  132. Belzung C (2001) Rodent models of anxiety-like behaviors: are they predictive for compounds acting via non-benzodiazepine mechanisms? Curr Opin Investig Drugs 8: 1108–11

    Google Scholar 

  133. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 1–2: 141–9

    Article  Google Scholar 

  134. Berkowitz RL, Coplan JD, Reddy DP, et al. (2007) The human dimension: how the prefrontal cortex modulates the subcortical fear response. Rev Neurosci 3–4: 191–207

    Google Scholar 

  135. Martin AL, McGrath PA, Brown SC, et al. (2007) Anxiety sensitivity, fear of pain and pain-related disability in children and adolescents with chronic pain. Pain Res Manag 4: 267–72

    Google Scholar 

  136. Preter M, Klein DF (2008) Panic, suffocation false alarms, separation anxiety and endogenous opioids. Prog Neuropsychopharmacol Biol Psychiatry 3: 603–12

    Article  CAS  Google Scholar 

  137. Roth WT (2005) Physiological markers for anxiety: panic disorder and phobias. Int J Psychophysiol 2–3: 190–8

    Article  Google Scholar 

  138. Jack MS, Heimberg RG, Mennin DS (1999) Situational panic attacks: impact on distress and impairment among patients with social phobia. Depress Anxiety 3: 112–8

    Article  Google Scholar 

  139. Armus HL, Montgomery AR (2001) Aversive and attractive properties of electrical stimulation for Paramecium caudatum. Psychol Rep 2: 342–4

    Article  Google Scholar 

  140. Bergstrom SR (1969) Amount of induced avoidance behaviour to light in the protozoa Tetrahymena as a function of time after training and cell fission. Scand J Psychol 1: 16–20

    Article  Google Scholar 

  141. Dewitte M, De Houwer J, Buysse A, et al. (2007) Proximity seeking in adult attachment: Examining the role of automatic approach-avoidance tendencies. Br J Soc Psychol

  142. Hunt C, Keogh E, French CC (2007) Anxiety sensitivity, conscious awareness and selective attentional biases in children. Behav Res Ther 3: 497–509

    Article  Google Scholar 

  143. Liddell BJ, Brown KJ, Kemp AH, et al. (2005) A direct brainstem-amygdala-cortical “alarm” system for subliminal signals of fear. Neuroimage 1: 235–43

    Article  Google Scholar 

  144. Williams LM, Liddell BJ, Kemp AH, et al. (2006) Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Hum Brain Mapp 8: 652–61

    Article  Google Scholar 

  145. Das P, Kemp AH, Liddell BJ, et al. (2005) Pathways for fear perception: modulation of amygdala activity by thalamo-cortical systems. Neuroimage 1: 141–8

    Article  Google Scholar 

  146. Williams LM, Brown KJ, Das P, et al. (2004) The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Brain Res Cogn Brain Res 1: 114–23

    Article  Google Scholar 

  147. Williams LM, Kemp AH, Felmingham K, et al. (2006) Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. Neuroimage 2: 347–57

    Article  Google Scholar 

  148. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 10: 1476–88

    Article  Google Scholar 

  149. Stein MB, Simmons AN, Feinstein JS, et al. (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 2: 318–27

    Article  Google Scholar 

  150. Blanchette I, Richards A (2003) Anxiety and the interpretation of ambiguous information: beyond the emotion-congruent effect. J Exp Psychol Gen 2: 294–309

    Article  Google Scholar 

  151. Fox E, Derakshan N, Shoker L (2008) Trait anxiety modulates the electrophysiological indices of rapid spatial orienting towards angry faces. Neuroreport 3: 259–63

    Google Scholar 

  152. Hunt C, Keogh E, French CC (2006) Anxiety sensitivity: the role of conscious awareness and selective attentional bias to physical threat. Emotion 3: 418–28

    Article  Google Scholar 

  153. Mogg K, Garner M, Bradley BP (2007) Anxiety and orienting of gaze to angry and fearful faces. Biol Psychol 3: 163–9

    Article  Google Scholar 

  154. McClure EB, Monk CS, Nelson EE, et al. (2007) Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Arch Gen Psychiatry 1: 97–106

    Article  Google Scholar 

  155. Williams LM, Barton MJ, Kemp AH, et al. (2005) Distinct amygdala-autonomic arousal profiles in response to fear signals in healthy males and females. Neuroimage 3: 618–26

    Article  Google Scholar 

  156. Shin LM, Wright CI, Cannistraro PA, et al. (2005) A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 3: 273–81

    Article  Google Scholar 

  157. Felmingham K, Kemp AH, Williams L, et al. (2008) Dissociative responses to conscious and non-conscious fear impact underlying brain function in post-traumatic stress disorder. Psychol Med: 1–10

  158. McLaughlin KA, Mennin DS, Farach FJ (2007) The contributory role of worry in emotion generation and dysregulation in generalized anxiety disorder. Behav Res Ther 8: 1735–52

    Article  Google Scholar 

  159. Novick-Kline P, Turk CL, Mennin DS, et al. (2005) Level of emotional awareness as a differentiating variable between individuals with and without generalized anxiety disorder. J Anxiety Disord 5: 557–72

    Article  Google Scholar 

  160. Mennin DS, Heimberg RG, Turk CL, et al. (2005) Preliminary evidence for an emotion dysregulation model of generalized anxiety disorder. Behav Res Ther 10: 1281–310

    Google Scholar 

  161. Decker ML, Turk CL, Hess B, et al. (2007) Emotion regulation among individuals classified with and without generalized anxiety disorder. J Anxiety Disord

  162. Mennin DS, Holaway RM, Fresco DM, et al. (2007) Delineating components of emotion and its dysregulation in anxiety and mood psychopathology. Behav Ther 3: 284–302

    Article  Google Scholar 

  163. Gamez W, Watson D, Doebbeling BN (2007) Abnormal personality and the mood and anxiety disorders: implications for structural models of anxiety and depression. J Anxiety Disord 4: 526–39

    Article  Google Scholar 

  164. Green MJ, Cahill CM, Malhi GS (2007) The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. J Affect Disord 1–3: 29–42

    Article  Google Scholar 

  165. Knight DC, Cheng DT, Smith CN, et al. (2004) Neural substrates mediating human delay and trace fear conditioning. J Neurosci 1: 218–28

    Article  CAS  Google Scholar 

  166. Dunsmoor JE, Bandettini PA, Knight DC (2007) Impact of continuous versus intermittent CS-UCS pairing on human brain activation during Pavlovian fear conditioning. Behav Neurosci 4: 635–42

    Article  Google Scholar 

  167. Holaway RM, Heimberg RG, Coles ME (2006) A comparison of intolerance of uncertainty in analogue obsessive-compulsive disorder and generalized anxiety disorder. J Anxiety Disord 2: 158–74

    Article  Google Scholar 

  168. Simmons A, Matthews SC, Paulus MP, et al. (2008) Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neurosci Lett 430(2): 92–7

    Article  PubMed  CAS  Google Scholar 

  169. Chua P, Krams M, Toni I, et al. (1999) A functional anatomy of anticipatory anxiety. Neuroimage 6 Pt 1: 563–71

    Article  Google Scholar 

  170. Gray M, Kemp AH, Silberstein RB, et al. (2003) Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neuroimage 2: 975–86

    Article  Google Scholar 

  171. Stein DJ, Arya M, Pietrini P, et al. (2006) Neurocircuitry of disgust and anxiety in obsessive-compulsive disorder: a positron emission tomography study. Metab Brain Dis 2–3: 267–77

    Google Scholar 

  172. Tillfors M, Furmark T, Marteinsdottir I, et al. (2002) Cerebral blood flow during anticipation of public speaking in social phobia: a PET study. Biol Psychiatry 11: 1113–9

    Article  Google Scholar 

  173. Damasio AR, Grabowski TJ, Bechara A, et al. (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 10: 1049–56

    Article  Google Scholar 

  174. Fink KB, Gothert M (2007) 5-HT Receptor Regulation of Neurotransmitter Release. Pharmacol Rev

  175. Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 6: 617–27

    Article  CAS  Google Scholar 

  176. Helm KA, Rada P, Hoebel BG (2003) Cholecystokinin combined with serotonin in the hypothalamus limits accumbens dopamine release while increasing acetylcholine: a possible satiation mechanism. Brain Res 1–2: 290–7

    Article  Google Scholar 

  177. Barnard EA, Skolnick P, Olsen RW, et al. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 2: 291–313

    Google Scholar 

  178. Bonnert TP, McKernan RM, Farrar S, et al. (1999) theta, a novel gamma-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci U S A 17: 9891–6

    Article  Google Scholar 

  179. Sinkkonen ST, Hanna MC, Kirkness EF, et al. (2000) GABA(A) receptor epsilon, theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J Neurosci 10: 3588–95

    Google Scholar 

  180. Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 2: 181–234

    Google Scholar 

  181. Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 1: 154–94

    Article  Google Scholar 

  182. Olkkola KT, Ahonen J (2008) Midazolam and other benzodiazepines. Handb Exp Pharmacol 182: 335–60

    Article  PubMed  CAS  Google Scholar 

  183. Korpi ER, Grunder G, Luddens H (2002) Drug interactions at GABA(A) receptors. Prog Neurobiol 2: 113–59

    Article  Google Scholar 

  184. Cash DJ, Serfozo P, Allan AM (1997) Desensitization of a gamma-aminobutyric acid type A receptor in rat is increased by chronic treatment with chlordiazepoxide: a molecular mechanism of dependence. J Pharmacol Exp Ther 2: 704–11

    Google Scholar 

  185. De Souza EB, Goeders NE, Kuhar MJ (1986) Benzodiazepine receptors in rat brain are altered by adrenalectomy. Brain Res 1: 176–81

    Google Scholar 

  186. McAllister-Williams RH, Massey AE, Fairchild G (2007) Repeated cortisol administration attenuates the EEG response to buspirone in healthy volunteers: evidence for desensitization of the 5-HT1A autoreceptor. J Psychopharmacol 8: 826–32

    Article  Google Scholar 

  187. de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 1–3: 125–39

    Google Scholar 

  188. Caramaschi D, de Boer SF, Koolhaas JM (2007) Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison. Physiol Behav 4: 590–601

    Article  CAS  Google Scholar 

  189. Skorzewska A, Bidzinski A, Lehner M, et al. (2007) The effects of acute corticosterone administration on anxiety, endogenous corticosterone, and c-Fos expression in the rat brain. Horm Behav 3: 317–25

    Article  CAS  Google Scholar 

  190. Eser D, Romeo E, Baghai TC, et al. (2006) Neuroactive steroids as modulators of depression and anxiety. Neuroscience 3: 1041–8

    Article  CAS  Google Scholar 

  191. Strohle A, Romeo E, di Michele F, et al. (2002) GABA(A) receptor-modulating neuroactive steroid composition in patients with panic disorder before and during paroxetine treatment. Am J Psychiatry 1: 145–7

    Article  Google Scholar 

  192. Strohle A, Romeo E, di Michele F, et al. (2003) Induced panic attacks shift gamma-aminobutyric acid type A receptor modulatory neuroactive steroid composition in patients with panic disorder: preliminary results. Arch Gen Psychiatry 2: 161–8

    Article  Google Scholar 

  193. Eser D, di Michele F, Zwanzger P, et al. (2005) Panic induction with cholecystokinin-tetrapeptide (CCK-4) Increases plasma concentrations of the neuroactive steroid 3alpha, 5alpha tetrahydrodeoxycorticosterone (3alpha, 5alpha-THDOC) in healthy volunteers. Neuropsychopharmacology 1: 192–5

    Article  CAS  Google Scholar 

  194. Voutsinos-Porche B, Knott G, Tanaka K, et al. (2003) Glial glutamate transporters and maturation of the mouse somatosensory cortex. Cereb Cortex 10: 1110–21

    Article  Google Scholar 

  195. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 5593: 556–62

    Article  Google Scholar 

  196. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 1: 1–105

    Article  Google Scholar 

  197. Pascual O, Casper KB, Kubera C, et al. (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 5745: 113–6

    Article  CAS  Google Scholar 

  198. John GR, Scemes E, Suadicani SO, et al. (1999) IL-1beta differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 20: 11613–8

    Article  Google Scholar 

  199. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 6101: 253–7

    Article  Google Scholar 

  200. Derouiche A, Frotscher M (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 3: 330–41

    Article  Google Scholar 

  201. Derouiche A, Anlauf E, Aumann G, et al. (2002) Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment. J Physiol Paris 3–4: 177–82

    Article  Google Scholar 

  202. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2: 73–86

    Article  Google Scholar 

  203. Bushong EA, Martone ME, Jones YZ, et al. (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 1: 183–92

    Google Scholar 

  204. Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 3: 1042–53

    Google Scholar 

  205. Araque A (2006) Astrocyte-neuron signaling in the brain-implications for disease. Curr Opin Investig Drugs 7(7): 619–24

    PubMed  CAS  Google Scholar 

  206. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 9: 2192–203

    Article  CAS  Google Scholar 

  207. Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 5841: 1083–6

    Article  CAS  Google Scholar 

  208. Rho MB, Wesselingh S, Glass JD, et al. (1995) A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav Immun 9(4): 366–77

    Article  PubMed  CAS  Google Scholar 

  209. Xu J, Drew PD (2006) 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. J Neuroimmunol 1–2: 135–44

    Article  CAS  Google Scholar 

  210. Fahey B, Hickey B, Kelleher D, et al. (2007) The widely-used antiviral drug interferon-alpha induces depressive- and anxiogenic-like effects in healthy rats. Behav Brain Res 1: 80–7

    Article  CAS  Google Scholar 

  211. De La Garza R 2nd,Asnis GM (2003) The non-steroidal anti-inflammatory drug diclofenac sodium attenuates IFN-alpha induced alterations to monoamine turnover in prefrontal cortex and hippocampus. Brain Res 1: 70–9

    Article  CAS  Google Scholar 

  212. de Boer AG, Gaillard PJ (2006) Blood-brain barrier dysfunction and recovery. J Neural Transm 4: 455–62

    Article  Google Scholar 

  213. Campbell IL, Krucker T, Steffensen S, et al. (1999) Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 1: 46–61

    Article  Google Scholar 

  214. Syed N, Martens CA, Hsu WH (2007) Arginine vasopressin increases glutamate release and intracellular Ca2+ concentration in hippocampal and cortical astrocytes through two distinct receptors. J Neurochem 1: 229–37

    Google Scholar 

  215. Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 3: 219–33

    Article  Google Scholar 

  216. Ackermann GE, Marenholz I, Wolfer DP, et al. (2006) S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses. Biochim Biophys Acta 11: 1307–19

    Google Scholar 

  217. Nichols NR (2003) Ndrg2, a novel gene regulated by adrenal steroids and antidepressants, is highly expressed in astrocytes. Ann N Y Acad Sci 1007: 349–56

    Article  PubMed  CAS  Google Scholar 

  218. Takahashi K, Yamada M, Ohata H, et al. (2005) Expression of Ndrg2 in the rat frontal cortex after antidepressant and electroconvulsive treatment. Int J Neuropsychopharmacol 3: 381–9

    Article  CAS  Google Scholar 

  219. Halaris A, Plietz J (2007) Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs 11: 885–900

    Article  Google Scholar 

  220. Bono H, Nikaido I, Kasukawa T, et al. (2003) Comprehensive analysis of the mouse metabolome based on the transcriptome. Genome Res 6B: 1345–9

    Article  CAS  Google Scholar 

  221. Nicholson JK, Holmes E, Lindon JC, et al. (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 10: 1268–74

    Article  CAS  Google Scholar 

  222. Chapman S, Asthagiri AR (2004) Resistance to signal activation governs design features of the MAP kinase signaling module. Biotechnol Bioeng 3: 311–22

    Article  CAS  Google Scholar 

  223. Grant MR, Mostov KE, Tlsty TD, et al. (2006) Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput Biol 10: e129

  224. Pullikuth AK, Aimanova K, Kang’ethe W, et al. (2006) Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti. J Exp Biol Pt 18: 3529–44

    Article  CAS  Google Scholar 

  225. Le-Niculescu H, Balaraman Y, Patel S, et al. (2007) Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2: 129–58

    Google Scholar 

  226. Ogden CA, Rich ME, Schork NJ, et al. (2004) Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 11: 1007–29

    Article  CAS  Google Scholar 

  227. Stone JM, Pilowsky LS (2006) Antipsychotic drug action: targets for drug discovery with neurochemical imaging. Expert Rev Neurother 1: 57–64

    Article  Google Scholar 

  228. Roth BL (2006) Contributions of molecular biology to antipsychotic drug discovery: promises fulfilled or unfulfilled? Dialogues Clin Neurosci 3: 303–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Iris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iris, F., Gea, M., Lampe, P.H. et al. Integrative biology in the discovery of relevant biomarkers monitoring cognitive disorders pathogenesis and progression. Bio trib. mag. 28, 8–23 (2008). https://doi.org/10.1007/BF03001641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001641

Keywords

Mots clés

Navigation