Log in

Interleukin-2 and human immunodeficiency virus infection: Pathogenic mechanisms and potential for immunologic enhancement

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A hallmark of human immunodeficiency virus (HIV) infection is the progressive loss of CD4+ T lymphocytes; however, qualitative defects in immune responses occur prior to the precipitous drop CD4+ T cell numbers. One of the first immunologic defects to be described in HIV-infected individuals is a deficiency in interleukin (IL)-2 production. The addition of IL-2 in vitro to cultures of mononuclear cells from HIV-infected individuals partially or completely restored certain defective cellular immune responses. However, production of or addition of IL-2 has also been associated with increased viral replication in infected T cells. These observations underscore the pernicious correlation between immune activation and HIV replication. However, recent in vitro and in vivo studies have provided promising preliminary results suggesting that, at least at certain stages of disease, the benefits of IL-2-mediated immune enhancement may outweigh or override the inductive effects of this cytokine on HIV production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fauci AS: The multifactorial and multiphasic components of human immunodeficiency virus disease: Implications for the design of therapeutic strategies. Science 1993;262:1011–1018.

    PubMed  CAS  Google Scholar 

  2. Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC: Long-term cultures of HTLV-III-infected T cells: A model of cytopathology of T-cell depletion in AIDS. Science 1986;231:850–853.

    PubMed  CAS  Google Scholar 

  3. Folks TM, Kelly J, Benn S, Kinter A, Justement J, Gold J, Redfield R, Sell KW, Fauci AS: Susceptibility of normal human lymphocytes to infection with HTLVIII/LAV. J Immunol 1986;136:4049–4053.

    PubMed  CAS  Google Scholar 

  4. McDougal JS, Mawle A, Cert SP, Nicholson JKA, Cross GD, Scheppler-Campbell JA, Hicks D, Sligh J: Cellular tropism of the human retrovirus HTLV-III/LAV I: Role of T cell activation and expression of the T4 antigen. J Immunol 1985;135:3151–3162.

    PubMed  CAS  Google Scholar 

  5. Pantaleo G, Graziosi C, Fauci AS: New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 1993;328:327–335.

    PubMed  CAS  Google Scholar 

  6. Miedema F: Immunological abnormalities in the natural history of HIV infection: Mechanisms and clinical relevance. Immunodefic Rev 1992;3:173–193.

    PubMed  CAS  Google Scholar 

  7. Schnittman SM, Greenhouse JJ, Psallidopoulos MC, Baseler M, Salzman NP, Fauci AS: Increasing viral burden in CD4+ T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease. Ann Intern Med 1990;113:438–443.

    PubMed  CAS  Google Scholar 

  8. Lane HC, Depper JM, Green WC, Whalen G, Waldmann TA, Fanci AS: Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. N Engl J Med 1985;313:79–84.

    PubMed  CAS  Google Scholar 

  9. Shearer GM, Bernstein DC, Tang KS, Via CS, Redfield R, Salahuddin SZ, Gallo RC: A model for the selective loss of major histocompatibility complex self-restricted T cell immune responses during the development of acquired immune deficiency syndrome (AIDS). J Immunol 1986;137:2514–2521.

    PubMed  CAS  Google Scholar 

  10. Clerici M, Stocks NI, Zajac RA, Boswell RN, Lucey DR, Via CS, Shearer GM: Detection of three different patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. J Clin Invest 1989;84:1892–1899.

    PubMed  CAS  Google Scholar 

  11. Clerici M, Via CS, Lucey DR, Roilides EM, Pizzo PA, Shearer GM: Functional dichotomy of CD4+ T helper lymphocytes in asymptomatic human immunodeficiency virus infection. Eur J Immunol 1991;21:665–670.

    PubMed  CAS  Google Scholar 

  12. Schulick RD, Clerici M, Dolan MJ, Shearer GM: Limiting dilution analysis of interleukin-2-producing T cells responsive to recall and alloantigens in human immunodeficiency virus-infected and uninfected individuals. Eur J Immunol 1993;23:412–417.

    PubMed  CAS  Google Scholar 

  13. Scott-Algara D, Vuillier F, Marasescu M, De Saint Martin J, Dighiero G: Serum levels of IL-2, IL-1, TNF-α, and soluble receptor of IL-2 in HIV-1-infected patients. AIDS Res Hum Retroviruses 1991;7:381–386.

    PubMed  CAS  Google Scholar 

  14. Honda M, Kitamura K, Matsuda K, Yokota Y, Yamamoto N, Mitsuyasu R, Chermann JC, Tokunaga T: Soluble IL-2 receptor in AIDS: Correlation of its serum level with the classification of HIV-induced diseases and its characterization. J Immunol 1989;142:4248–4255.

    PubMed  CAS  Google Scholar 

  15. Hofmann B, Nishanian P, Fahey JL, Esmail I, Jackson AL, Detels R, Cumberland W: Serum increases and lymphoid cell surface losses of IL-2 receptor CD25 in HIV infection: Distinctive parameters of HIV-induced change. Clin Immunol Immunopathol 1991;61:212–224.

    PubMed  CAS  Google Scholar 

  16. Lane HC, Siegal J, Rook AH, Masur H, Quinnan GV, Fauci AS: Use of interleukin-2 in patients with the acquired immunodeficiency syndrome (AIDS). J Biol Response Modif 1984;3:512–516.

    CAS  Google Scholar 

  17. Rook AH, Masur H, Lane HC, Frederick W, Kasahara T, Macher AM, Djeu JY, Manischewitz JF, Jackson L, Fauci AS, Quinnan GV Jr: Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immune deficiency syndrome. J Clin Invest 1983;72:398–403.

    PubMed  CAS  Google Scholar 

  18. Bich-Thuy LT, Lane HC, Fauci AS: Recombinant interleukin-2-induced polyclonal proliferation of in vitro unstimulated human peripheral blood lymphocytes. Cell Immunol 1986;98:396–410.

    PubMed  CAS  Google Scholar 

  19. Schwartz DH, Merigan TC: Interleukin-2 in the treatment of HIV disease. Biotherapy 1990;2:119–136.

    PubMed  CAS  Google Scholar 

  20. Grunters RA, Terpstra FG, De Jong R, Van Noesel CJM, Van Lier RAW, Miedema F: Selective loss of T cell functions in different stages of HIV infection. Eur J Immunol 1990; 20:1039–1044.

    Google Scholar 

  21. Cordiali Fei P, Solmone M, Viora M, Vanacore P, Pugliese O, Giglio A, Caprilli F, Ameglio F: Apoptosis in HIV infection: Protective role of IL-2. J Biol Regul Homeost Agents 1994;8:60–64.

    PubMed  CAS  Google Scholar 

  22. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RPM, Miedema F: Programmed death of T cells in HIV-1 infection. Science 1992;257:217.

    PubMed  CAS  Google Scholar 

  23. Lewis DE, Tang DS, Adu-Oppong A, Schober W, Rodgers JR: Anergy and apoptosis in CD8+ T cell from HIV-infected persons. J Immunol 1994;153:412–420.

    PubMed  CAS  Google Scholar 

  24. Gougeon ML, Garcia S, Heeney J, Tschopp R, Lecoeur H, Guetard D, Rame V, Dauguet C, Montagnier L: Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Hum Retroviruses 1993; 9:553–563.

    Article  PubMed  CAS  Google Scholar 

  25. Kinter AL, Poli G, Fox L, Hardy E, Fauci AS: HIV replication in IL-2-stimulated peripheral blood mononuclear cells is driven in an autocrine/paracrine manner by endogenous cytokines. J Immunol 1995; 154:2448–2459.

    PubMed  CAS  Google Scholar 

  26. Ramijo O, Bell KD, Uhr JW, Vitetta ES: Role of CD25+ T cells in acute HIV infection in vitro. J Immunol 1993;150:5202–5208.

    Google Scholar 

  27. Todd B, Pope JH, Georghiou P: Interleukin-2 enhances production in 24 hours of infectious human immunodeficiency virus type 1 in vitro by naturally infected mononuclear cells from seropositive donors. Arch Virol 1991;121:227–232.

    PubMed  CAS  Google Scholar 

  28. Garcia JA, Gayner RB: The human immunodeficiency virus type-1 long terminal repeat and its role in gene expression. Prog Nucleic Acid Res Mol Biol 1994;49:157–196.

    PubMed  CAS  Google Scholar 

  29. Sinicco A, Biglino A, Sciandra M, Forno B, Pollono AM, Raiteri R, Gioannini P: Cytokine network and acute primary HIV-1 infection. AIDS 1993;7:1167–1172.

    PubMed  CAS  Google Scholar 

  30. Fan J, Bass HZ, Fahey JL: Elevated IFN-γ and decreased IL-2 gene expression are associated with HIV infection. J Immunol 1993;151:5031–5040.

    PubMed  CAS  Google Scholar 

  31. McGowan I, Radford-Smith G, Jewell DP: Cytokine gene expression in HIV-infected intestinal mucosa. AIDS 1994;8:1569–1575.

    PubMed  CAS  Google Scholar 

  32. Emilie D, Peuchmaur M, Maillot MC, Crevon MC, Brousse N, Delfraissy JF, Dormont J, Galanaud P: Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes. J Clin Invest 1990;86:148–159.

    PubMed  CAS  Google Scholar 

  33. Graziosi C, Pantaleo G, Gantt KR, Fortin JP, Demarest JF, Cohen OJ, Sékaly RP, Fauci AS: Lack of evidence for the dichotomy of TH1 and TH2 predominance in HIV-infected individuals. Science 1994;265:248–252.

    PubMed  CAS  Google Scholar 

  34. Ciardi M, Sharief MK, Noori MA, Thompson EJ, Salotti A, Rossi F, Vullo V, Catania S, Sorice F, Cirelli A: Intrathecal synthesis of interleukin-2 and soluble IL-2 receptor in asymptomatic HIV-1 seropositive individuals: Correlation with local production of specific IgM and IgG antibodies. J Neurol Sci 1993;115:117–122.

    PubMed  CAS  Google Scholar 

  35. Ciardi M, Sharief MK, Thompson EJ, Salotti A, Vullo V, Sorice F, Cirelli A: High cerebrospinal fluid and serum levels of tumor necrosis factor-alpha in asymptomatic HIV-1 seropositive individuals. Correlation with interleukin-2 and soluble IL-2 receptor. J Neurol Sci 1994; 125:175–179.

    PubMed  CAS  Google Scholar 

  36. Clerici M, Hakim FT, Venzon DJ, Blatt S, Hendrix CW, Wynn TA, Sherer GM: Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J Clin Invest 1993;91:759–765.

    PubMed  CAS  Google Scholar 

  37. Clerici M, Shearer GM: The Th1–Th2 hypothesis of HIV infection: New insights. Immunol Today 1994;15:575–581.

    PubMed  CAS  Google Scholar 

  38. Chehimi J, Starr SE, Frank I, D'Andrea A, Ma X, MacGregor RR, Sennelier J, Trinchieri G: Impaired interleukin 12 production in human immunodeficiency virus-infected patients. J Exp Med 1994;179:1361–1366.

    PubMed  CAS  Google Scholar 

  39. Clerici M, Lucey DR, Berzofsky JA, Pinto LA, Wynn TA, Blatt SP, Dolan MJ, Hendrix CW, Wolf SF, Shearer GM: Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro. Science 1993;262:1721–1724.

    PubMed  CAS  Google Scholar 

  40. Maggi E, Mazzetti M, Ravina A, Annunziato F, de Carli M, Piccinni MP, Manetti R, Carbonari M, Pesce AM, del Prete G, Romagnani S: Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science 1994;265:244–288.

    PubMed  CAS  Google Scholar 

  41. Ammar A, Cibert C, Bertoli AM, Tsilivakos V, Jasmin C, Georgoulias V: Biological and biochemical characterization of a factor produced spontaneously by adherent cells of human immunodeficiency virus-infected patients inhibiting interleukin-2 receptor alpha chain (Tac) expression on normal T cells. J Clin Invest 1991;87:2048–2055.

    PubMed  CAS  Google Scholar 

  42. Fernandez-Cruz E, Gelpi E, Longo N, Gonzales B, de la Morena MT, Montes MG, Rosello J, Ramis I, Suarez A, Fernandez A, Zabay JM: Increased synthesis and production of prostaglandin E2 by monocytes from drug addicts with AIDS. AIDS 1989;3:91–96.

    PubMed  CAS  Google Scholar 

  43. Lees O, Ramzacui S, Gilbert D, Borsa F, Humbert G, Leblanc D, Lagarde M, Tron F: The impaired in vitro production of interleukin-2 in HIV infection is negatively correlated to the number of circulating CD4+ DR+ T cells and is reversed by allowing T cells to rest in culture: Arguments for in vivo CD4+ T cell activation. Clin Immunol Immunopathol 1993;63:185–191.

    Google Scholar 

  44. Liegler TJ, Stites DP: HIV-1 gp120 and anti-gp120 induce reversible unresponsiveness in peripheral CD4 T lymphocytes. J Acquir Immune Defic Syndr 1994;7:340–348.

    PubMed  CAS  Google Scholar 

  45. Faith A, O'Hehir RE, Malkovsky M, Lamb JR: Analysis of the basis of resistance and susceptibility of CD4+ T cells to human immunodeficiency virus (HIV)-gp120 induced anergy. Immunology 1992;76:177–184.

    PubMed  CAS  Google Scholar 

  46. Meyaard L, Schuitemaker H, Miedenia F: T-cell dysfunction in HIV infection: Anergy due to defective antigen-presenting cell function. Immunol Today 1993;14:161–164.

    PubMed  CAS  Google Scholar 

  47. Oyaizu N, Chirmule N, Kalyanaraman VS, Hall WW, Pahwa R, Shuster M, Pahwa S: Human immunodeficiency virus type 1 envelope glycoprotein gp120 produces immune defects in CD4+ T lymphocytes by inhibiting interleukin 2m RNA. Proc Natl Acad Sci USA 1990;87:2379–2383.

    PubMed  CAS  Google Scholar 

  48. Tyring SK, Cauda R, Tumbarello M, Ortona L, Kennedy RC, Chanh TC, Kanda P: Synthetic peptides corresponding to sequences in HIV envelope gp41 and gp120 enhance in vitro production of interleukin-1 and tumor necrosis factor but depress production of interferon-alpha, interferon-gamma and interleukin-2. Viral Immunol 1991;4:33–42.

    PubMed  CAS  Google Scholar 

  49. Viscidi RP, Mayur K, Lederman HM, Frankel AD: Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 1989;246:1606–1608.

    PubMed  CAS  Google Scholar 

  50. Puri RK, Leland P, Aggarwal BB: Constitutive expression of human immunodeficiency virus type 1tat gene inhibits interleukin 2 and interleukin 2 receptor expression in a human CD4+ T lymphoid (H9) cell line. AIDS Res Hum Retroviruses 1995;11:31–40.

    PubMed  CAS  Google Scholar 

  51. Chirmule N, Than S, Khan SA, Pahwa S: Human immunodeficiency virus Tat induces functional unresponsiveness in T cells. J Virol 1995; 69:492–498.

    PubMed  CAS  Google Scholar 

  52. Luria S, Chambers I, Berg P: Expression of the type 1 human immunodeficiency virus Nef protein in T cells prevents antigen receptor-mediated induction of interleukin 2 mRNA. Proc Natl Acad Sci USA 1991;88:5326–5330.

    PubMed  CAS  Google Scholar 

  53. Greenway A, Azad A, McPhee D: Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines. J Virol 1995;69:1842–1850.

    PubMed  CAS  Google Scholar 

  54. Zola H, Koh LY, Mantzoris BX, Rhodes D: Patients with HIV infection have a reduced proportion of lymphocytes expression the IL-2 receptor p55 chain (TAC, CD25). Clin Immunol Immunopathol 1991;59:16–25.

    PubMed  CAS  Google Scholar 

  55. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS: HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 1993;362:355–358.

    PubMed  CAS  Google Scholar 

  56. Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT: Massive covert infection of helper lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 1993; 362:359–362.

    PubMed  CAS  Google Scholar 

  57. Muro-Cacho CA, Pantaleo G, Fauci AS: Analysis of apoptosis in lymph nodes of HIV-infected persons. J Immunol 1995;154:5555–5566.

    PubMed  CAS  Google Scholar 

  58. Pantaleo G, Koenig S, Baseler M, Lane HC, Fauci AS: Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS: Expansion in vivo of a nonclonogenic CD3+CD8+DR+CD25- T cell population. J Immunol 1990;144:1696–1704.

    PubMed  CAS  Google Scholar 

  59. Lauener RP, Huttner S, Buisson M, Hossle JP, Albisetti M, Seigneurin JM, Seger RA, Nadal D: T-cell death by apoptosis in vertically human immunodeficiency virus-infected children coincides with expansion of CD8+/interleukin-2 receptor-/HLA-DR+ T cells: Sign of a possible role for herpes viruses as cofactors? Blood 1995;86:1400–1407.

    PubMed  CAS  Google Scholar 

  60. McMahon DK, Winkelstein A, Armstrong JA, Pazin GJ, Hawk H, Ho M: Zidevudine therapy is associated with an increased capacity of phytohemagglutinin-stimulated cells to express interleukin-2 receptors. Pittsburgh AIDS Clinical Trial Unit. AIDS 1991;5:491–496.

    PubMed  CAS  Google Scholar 

  61. Viora M, Gamponeschi B: Down-regulation of interleukin-2 receptor gene activation and protein expression by dideoxynucleoside analogs. Cell Immunol 1995;163:286–295.

    Google Scholar 

  62. Perez VL, Rowe T, Justement JS, Burtera ST, June CH, Folks TM: An HIV-1-infected T cell clone defective in IL-2 production and Ca2+ mobilization after CD3 stimulation. J Immunol 1991;147:3145–3148.

    PubMed  CAS  Google Scholar 

  63. Serpente, N, sitbon M, Vaquero C: Suboptimal and optimal activation signals modulate differently the expression of HIV-i and cytokine genes. Biochem Biophys Res Commun 1992;182:1172–1179.

    PubMed  CAS  Google Scholar 

  64. Tsunetsugu-Yokota Y, Honda M: Effect of cytokines on HIV release and IL-2 receptor expression in menocytic cell lines. J AIDS 1990;3: 511–516.

    CAS  Google Scholar 

  65. Allen JB, McCartney-Francis N, Smith PD: Expression of interleukin 2 receptors by monocytes from patients with acquired immunodeficiency syndrome and induction of monocyte interleukin 2 receptors by human immunodeficiency virus in vitro. J Clin Invest 1990;85:192–199.

    PubMed  CAS  Google Scholar 

  66. Rubin LA, Kurman CC, Fritz ME, Biddison WE, Boutin B, Yarchoan R, Nelson DL: Soluble interleukin-2 receptors are released from activated human lymphoid cells in vitro. J Immunol 1985;135:3172–3177.

    PubMed  CAS  Google Scholar 

  67. Symons JA, Wood NC, Di Giovine FS, Duff GW: Soluble IL-2 in rheumatoid arthritis: Correlation with disease activity, IL-2 and IL-2 inhibition. J Immunol 1988;141:2612–2618.

    PubMed  CAS  Google Scholar 

  68. Huang YU, Perrin LH, Miescher PA, Zubler RH: Correlation of T activities in vitro and serum IL-2R levels in systemic lupus erythematosus. J Immunol 1988;141:827–830.

    PubMed  CAS  Google Scholar 

  69. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M Richardson E, Kalyanarama VS, Mann D, Sidhu GD, Stahl RF, Zolla-Pazner S, Leibowitch J, Popovic M: Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 1983;220: 865–867.

    PubMed  CAS  Google Scholar 

  70. Nabel G, Baltimore D: An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987;326: 711–713.

    PubMed  CAS  Google Scholar 

  71. Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB: Tumor necrosis factor α activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat. Proc Natl Acad Sci USA 1989;86:5974–5978.

    PubMed  CAS  Google Scholar 

  72. Miyaiima A, Hara T, Kitamura T: Common subunits of cytokine receptors and the functional redundancy of cytokines. Trends Biochem Sci 1992;17:378–382.

    Google Scholar 

  73. Hazan U, Thomas D, Alcami J, Bachelerie F, Israel N, Yssel H, Virelizier JL, Arenzana-Seisdedos F: Stimulation of a human T-cell clone with anti-CD3 or tumor necrosis factor induces NF-κB translocation but not human immunodeficiency virus 1 enhancer-dependent transcription. Proc Natl Acad Sci USA 1990;87:7861–7865.

    PubMed  CAS  Google Scholar 

  74. Kobayashi N, Hamamoto Y, Kovanagi Y, Chen IS, Yamamoto N: Effect of interleukin-1 on the augmentation of human immunodeficiency virus gene expression. Biochem Biophys Res Commun 1989;165:715–721.

    PubMed  CAS  Google Scholar 

  75. Horvat RT, Wood C: HIV promoter activity in primary antigen-specific human T lymphocytes. J Immunol 1989;143:2745–2751.

    PubMed  CAS  Google Scholar 

  76. Cluitmans FH, Esendam BH, Landegent JE, Willemze R, Falkengurg JH: Regulatory effects of T cell lymphokines on cytokine gene expression in monocytes. Lymphokine Cytokine Res 1993;12:457–464.

    PubMed  CAS  Google Scholar 

  77. Vitolo D, Vujanovic NL, Rabinowich H, Schlesinger M, Herberman RB, Whiteside IL: Rapid IL-2 induced adherence of human natural killer cells. J Immunol 1993;151: 1926–1937.

    PubMed  CAS  Google Scholar 

  78. Schoof DD, Hunt P, Obando JA, Cusack J Jr, Andrews V, Terashima Y, Eberlein TJ: Secondary cytokine production by lymphoid cells used in cellular immunotherapy. Surg Oncol 1992;2:163–172.

    Google Scholar 

  79. Burdach S, Zessack N, Dilloo D, Shatsky M, Thompson D, Levitt L: Differential regulation of lymphokine production by distinct subunits of the T cell interleukin 2 receptor. J Clin Invest 1991;87:2114–2121.

    PubMed  CAS  Google Scholar 

  80. Waldmann TA: The IL-2/IL-2 receptor system: A target for rational immune intervention. Immunol Today 1993;14:264–270.

    PubMed  CAS  Google Scholar 

  81. Tang S, Patterson B, Levy JA: Highly purified quiescent human peripheral blood CD4+ T cells are infectible by human immunodeficiency virus but do not release virus after activation. J Virol 1995;69:5659–5665.

    PubMed  CAS  Google Scholar 

  82. Nakamura Y, Nishimura T, Tokuda Y, Kobayashi N, Watanabe, K, Noto T, Mitomi T, Sugamura K, Habu S: Macrophage-T cell interaction is essential for the induction of p75 interleukin 2 (IL-2) receptor and IL-2 responsiveness in human CD4+ T cells. Jpn J Cancer Res 1991;82: 257–261.

    PubMed  CAS  Google Scholar 

  83. Vyth-Dreese FA, Dellemijn TAM, Frijhoff A, van Kooyk Y, Figdor CG: Role of LFA-1/ICAM-1 in interleukin-2-stimulated lymphocyte proliferation. Eur J Immunol 1993; 23:3292–3299.

    PubMed  CAS  Google Scholar 

  84. Diegel ML, Moran PA, Gilliland LK, Damle NK, Hayden MS, Zarling JM, Ledbetter JA: Regulation of HIV production by blood mononuclear cells from HIV-infected donors. II: HIV-t production depends on T cell-monocyte interaction. AIDS Res Hum Retroviruses 1993; 9:465–473.

    PubMed  CAS  Google Scholar 

  85. Weissman D, Li X, Orenstein JM, Fauci AS: Both a precursor and a mature population of dendritic cells can bind HIV; however, only the mature population that expresses CD80 can pass infection to unstimulated CD4 positive T cells. J Immunol 1995;155:4111–4117.

    PubMed  CAS  Google Scholar 

  86. Carding SR, Allan W, McMickle A, Doherty P: Activation of cytokine genes in T cells during primary and secondary murine influenza. J Exp Med 1993;177:475–482.

    PubMed  CAS  Google Scholar 

  87. Walker CM, Moody DJ, Stites DP, Levy JA: CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 1986;234:1563–1566.

    PubMed  CAS  Google Scholar 

  88. Hoffenbach A, Langlade-Demoyen P, Dadaglio G, Vilmer E, Michel F, Mayaud C, Autran B, Plata F: Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. J Immunol 1989;142:452–462.

    PubMed  CAS  Google Scholar 

  89. Mackewicz C, Levy JA: CD8+ cell anti-HIV activity: Nonlytic suppression of virus replication. AIDS Res Hum Retroviruses 1992;8:1039–1050.

    PubMed  CAS  Google Scholar 

  90. Tsubota H, Lord CI, Watkins DI, Morimoto C, Letvin NL: A cytotoxic T lymphocyte inhibits acquired immunodeficiency syndrome virus replication in peripheral blood lymphocytes. J Exp Med 1989;169:1421–1434.

    PubMed  CAS  Google Scholar 

  91. Kinter AL, Bende SM, Hardy EC, Jackson R, Fauci AS: Interleukin-2 induces CD8+ T cell-mediated suppression of HIV replication in CD4+ T cells and this effect overrides its ability to stimulate virus expression. Proc Natl Acad Sci USA, in press.

  92. Bukrinsky M, Sharova N, Stevenson M: Human immunodeficiency virus type 1 2-LTR circles reside in a nucleoprotein complex which is different from the preintegration complex. J Virol 1993;67:6863–6865.

    PubMed  CAS  Google Scholar 

  93. Zack J, Haislip AM, Krogstad P, Chen ISY: Incompletely reversetranscribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol 1992;66:1717–1725.

    PubMed  CAS  Google Scholar 

  94. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen ISY: HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 1990;61:213–222.

    PubMed  CAS  Google Scholar 

  95. Spina CA, Guatelli JC, Richman DD: Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4 lymphocytes in vitro. J Virol 1995;69:2977–2988.

    PubMed  CAS  Google Scholar 

  96. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M: Active nuclear import of HIV-1 preintegration complexes. Proc Natl Acad Sci USA 1992;89:6580–6584.

    PubMed  CAS  Google Scholar 

  97. Bukrinsky ML, Stanwick TL, Dempsey MP, Stevenson M: Qulescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 1991;254:423–427.

    PubMed  CAS  Google Scholar 

  98. Borvak J, Chou CS, Beil K, Van Dyke G, Zola H, Ramilo O, Vitetta ES: Expression of CD25 defines peripheral bleod mononuclear cells with productive versus latent HIV infection. J Immunol 1995; 155:3196–3204.

    PubMed  CAS  Google Scholar 

  99. Finberg RW, Wahl SM, Allen JB, Soman G, Strom TB, Murphy JR, Nichols JC: Selective elimination of HIV-1-infected cells with an interleukin-2 receptor-specific cytotoxin. Science 1991;252:1703.

    PubMed  CAS  Google Scholar 

  100. Zhang L, Waters C, Nichols J, Crumpacker C: Inhibition of HIV-1 RNA production by the diphtheria toxin-reiated IL-2 fusion proteins DAB486 IL-2 and DAB389 IL-2. J Acquir Immune Defic Syndr 1992;5:1181–1187.

    PubMed  CAS  Google Scholar 

  101. Seshamma T, Bagasra O, Trono D, Baltimore D, Pomerantz RJ: Blocked early-stage latency in the peripheral blood cells of certain individuals infected with hurman immunodeficiency virus type 1. Proc Natl Acad Sci USA 1992;89:10663–10667.

    PubMed  CAS  Google Scholar 

  102. Bagasra O, Seshamma T, Oakes JW, Pomerantz RJ: High percentages of CD4-positive lymphocytes harbor the HIV-1 provirus in the blood of certain infected individuals. AIDS 1993;7:1419–1425.

    Article  PubMed  CAS  Google Scholar 

  103. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995;373:117–122.

    PubMed  CAS  Google Scholar 

  104. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995;373: 123–126.

    PubMed  CAS  Google Scholar 

  105. Sirianni MC, Tagliaferri F, Aiuti F: Pathogenesis of the natural killer cell deficiency in AIDS. Immunol Today 1990;11:81–82.

    PubMed  CAS  Google Scholar 

  106. Brenner BG, Gryllis C, Gornitsky M, Wainberg MA: Changes in natural immunity during the course of HIV-1 infection. Clin Exp Immunol 1993;93:142–148.

    PubMed  CAS  Google Scholar 

  107. Ullum H, Gøtzsche PC, Victor J, Dickmeiss E, Skinhøj P, Pedersen BK: Defective natural immunity: An early manifestation of human immunodeficiency virus infection. J Exp Med 1995;182:789–799.

    PubMed  CAS  Google Scholar 

  108. Cauda R, Tumbarello M, Ortona L, Kennedy RC, Shuler KR, Chanh TC, Kanda P: Inhibition of lymphokine-activated killer activity during HIV infection: Role of HIV-1 gp41 synthetic peptides. Nat Immun Cell Growth Regul 1990;9:366–375.

    PubMed  CAS  Google Scholar 

  109. Lifson JD, Benike CJ, Mark DF, Koths K, Engleman EG: Human recombinant interleukin-2 partly reconstitutes deficient in-vitro immune responses of lymphocytes from patients with AIDS. Lancet 1984;i:698–702.

    Google Scholar 

  110. Bonavida B, Katz J, Gottlieb M: Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. I: Defective trigger on NK cells for NKCF production by target cells, and partical restoration by IL-2. J Immunol 1986;137:1157–1163.

    PubMed  CAS  Google Scholar 

  111. Ciobanu N, Welte K, Kruger G, Venuta S, Gold J, Feidman SP, Wang CY, Koziner B, Moore MA, Safai B, Mertelsmann R: Defective T-cell response to PHA and mitogenic monoclonal antibodies in male homosexuals with acquired immunodeficiency syndrome and its in vitro correction by interleukin 2. J Clin Immunol 1983;3:332–340.

    PubMed  CAS  Google Scholar 

  112. Van Noessel CJM, Gruters RA, Terpstra FG, Schellekens PTA, Van Lier RAW, Miedema F: Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic HIV-infected men. J Clin Invest 1990;86:293–299.

    Google Scholar 

  113. Prince HE, Moody DJ, Shubin BI, Fahey JL: Defective monocyte function in acquired immune deficiency syndrome (AIDS): Evidence from a monocyte dependent T-cell proliferative system. J Clin Immunol 1985;5:21–25.

    PubMed  CAS  Google Scholar 

  114. Eales LJ, Farrant J, Helbert M, Pinching AJ: Peripheral blood dendritic cells in persons with AIDS and AIDS related complex: Loss of high intensity class II antigen expression and function. Clin Exp Immunol 1988;71:423–427.

    PubMed  CAS  Google Scholar 

  115. Terpstra FG, Al BJM, Roos MTHL, De Wolf F, Goudsmit J, Schellekens PT, Miedema F: Longitudinal study of leukocyte functions in homosexual men seroconverted for HIV: Rapid and persistent loss of B-cell function after HIV infection. Eur J Immunol 1989;19:667–673.

    PubMed  CAS  Google Scholar 

  116. Miedema F, Petit AJC, Terpstra FG, Schattenkerk JKME, De Wolf F, Al BJM, Roos M, Lange JMA, Sanner SA, Goudsmit J, Schellekens PTA: Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men: HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest 1988;2:1908–1914.

    Google Scholar 

  117. Pandolfi F, Pierdominici M, Oliva A, D'Offizi G, Mezzaroma I, Mollicone B, Giovannetti A, Rainaldi L, Quinti I, Aiuti F: Apoptosisrelated mortality in vitro of mononuclear cells from patients with HIV infection correlates with disease severity and progression. J Acquir Immun Defic Syndr Hum Retrovirol 1995;9:450–458.

    CAS  Google Scholar 

  118. Clerici M, Sarin A, Coffman RL, Wynn TA, Blatt SP, Hendrix CW, Wolf SF, Shearer GM, Henkart PA: Type 1/type 2 cytokine modulation of T-cell programmed cell death as a model for human immunodeficiency virus pathogenesis. Proc Natl Acad Sci USA 1994;91:11811–11815.

    PubMed  CAS  Google Scholar 

  119. Chia WK, Nisbet-Brown E, Li X, Salit I, Joshi S, Read SE: Lack of correlation between phenotype activation markers of CD8 lymphocytes and cytotoxic T lymphocyte (CTL) function in HIV-1 infection: Evidence for rescue with rIL-2. Viral Immunol 1994;7:81–95.

    PubMed  CAS  Google Scholar 

  120. Walker BD, Plata F: Cytotoxie T lymphocytes against HIV. AIDS 1990;4:177–184.

    PubMed  CAS  Google Scholar 

  121. Lieberman J, Fabry JA, Kuo MC, Earl P, Moss B, Skolnik PR: Cytotoxic T lymphocytes from HIV-1 seropositive individuals recognize immunodominant epitopes in gp160 and reverse transcriptase. J Immunol 1992;148:2738–2747.

    PubMed  CAS  Google Scholar 

  122. Lieberman J, Fabry JA, Shankar P, Beckett L, Skolnik PR: Ex vivo expansion of HIV type 1-specific cytolytic T cells from HIV type 1-seropositive subjects. AIDS Res Hum Retroviruses 1995;11:257–271.

    PubMed  CAS  Google Scholar 

  123. Lieberman J, Skolnik PR, Parkeron GR, Fabry JA, Fong DM, Beyer D, Wang A, Landry B, Kagan J: Immunotherapy with exvivo-expanded HIV-specific cytotexic lymphocytes in subjects with CD4 counts of 100-400/mm3. AIDS Res Hum Retroviruses 1995;(suppl 132).

  124. Koenig S, Conley AJ, Brewah YA, Jones GM, Leath S, Bods LJ, Davey V, Pantaleo G, Demarest JF, Carter C, Wannebo C, Yannelli JR, Rosenberg SA, Lane HC: Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat Med 1995;1:330–336.

    PubMed  CAS  Google Scholar 

  125. Ramsay AJ, Ruby J, Ramshaw IA: A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 1993; 14:155–157.

    PubMed  CAS  Google Scholar 

  126. Mertelsmann R, Welte K, Stemberg C, O'Reilly R, Moore MAS, Clarkson BD, Oettgen HF: Treatment of immunodeficiency with interleukin-2: Initial exploration. J Biol Response Modif 1984;4:483–490.

    Google Scholar 

  127. Lotze MT, Robb RJ, Shatrow SO, Frana LW, Rosenberg SA: Systemic administration of interleukin-2 in humans. J Biol Response Modif 1984;3:475–482.

    CAS  Google Scholar 

  128. Kern P, Toy J, Dietrich M: Preliminary clinical observations with recombinant interleukin-2 in patients with AIDS or LAS. Blut 1985;50:1–6.

    PubMed  CAS  Google Scholar 

  129. Ernst M, Kern P, Flad HD, Ulmer AJ: Effects of systemic in vivo interleukin-2 (IL-2) reconstitution in patients with acquired immune deficiency (AIDS) and AIDS-related complex (ARC) on phenotypes and functions of peripheral blood mononuclear cells (PBMC). J Clin Immunol 1986;6:170–181.

    PubMed  CAS  Google Scholar 

  130. Wood R, Montoya JG, Kundu SK, Schwartz DH, Merigan TC: Safety and efficacy of polyethylene glycclmodified interleukin-2 and zidovudine in human immunodeficiency virus type 1 infection: A phase I/II study. J Infect Dis 1993; 167:519–525.

    PubMed  CAS  Google Scholar 

  131. Schwartz DH, Skowron G, Merigan TC: Safety and effects of interleukin-2 plus zidovudine in asymptomatic in dividuals infected with human immunodeficiency virus. J Acquir Immune Defic Syndr 1991;4:11–23.

    PubMed  CAS  Google Scholar 

  132. Teppler H, Kaplan G, Smith KA, Montana AL, Meyn P, Cohn ZA: Prolonged immunostimulatory effect of low-dose polyethylene glycol interleukin 2 in patients with human immunodeficieney virus type 1 infection. J Exp Med 1993; 177:483–492.

    PubMed  CAS  Google Scholar 

  133. Kovacs JA, Baseler M, Dewar RJ, Vogel S, Davey RT Jr, Falloon J, Polis MA, Walker RE, Stevens R, Salzman NP, Metcalf JA, Masur H, Lane HC: Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection: A preliminary study. N Engl J Med 1995;332:567–575.

    PubMed  CAS  Google Scholar 

  134. Chow YK, Hirsch MS, Merrill DP, Bechtel LJ, Eron JJ, Kaplan JC, D'Aquila RT: Use of evolutionary limitations of HIV-1 multidrug resistance to optimize therapy. Nature 1993;361:650–654.

    PubMed  CAS  Google Scholar 

  135. Larder BA, Kellam P, Kemp SD: Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro. Nature 1993; 365:451–453.

    PubMed  CAS  Google Scholar 

  136. Caliendo AM, Hirsch MS: Combination therapy for infection due to human immunodeficiency virus type 1. Clin Infect Dis 1994;18:516–524.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinter, A., Fauci, A.S. Interleukin-2 and human immunodeficiency virus infection: Pathogenic mechanisms and potential for immunologic enhancement. Immunol Res 15, 1–15 (1996). https://doi.org/10.1007/BF02918280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918280

Key Words

Navigation