Log in

Chemisorption-facilitated dislocation emission and motion, and induced nucleation of brittle nanocrack

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Using a special TEM constant deflection device, the change in dislocation configuration ahead of a loaded crack tip before and after adsorption of Hg atoms and the initiation of liquid metal-induced nanocracks (LMIC) have been observed. The results show that chemisorption of Hg atoms can facilitate dislocation emission, multiplication and motion. Nanocracks will be initiated in the dislocation-free zone (DFZ) or at the crack tip when chemisorption-facilitated dislocation emission, multiplication and motion reach a critical condition. On the basis of the available experimental evidence concerning liquid metal embrittlement (LME), a new mechanism for this phenomenon is considered. This involves the fact that the decrease in surface energy induced by chemisorption of Hg atoms results in a reduction in the critical stress intensity factors for dislocation emission and the resistance for dislocation motion. On the other hand, the plastic work andK IC will decrease with the decrease in the surface energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholas, M. G., Old, C. F., Liquid metal embrittlement,J. Mater. Sci., 1979, 14: 1.

    Article  Google Scholar 

  2. Kelley, M. J., Stoloff, N. S., Analysis of liquid metal embrittlement from a bond energy viewpoint,Met. Trans., 1975, 6A: 159.

    Google Scholar 

  3. Lynch, S. P., Overview of evidence for an adsorption-induced localised-slip process,Acta Metall., 1988, 36: 2639.

    Article  Google Scholar 

  4. Kargol, J. A., Albrighy, D. L., The effect of relative crystal orientation on the liquid metal induced grain boundary fracture of aluminum bicrystals,Metall. Trans., 1977, 8A: 27.

    Google Scholar 

  5. Bond, G. M., Robertson, I. M., Birnbaum, H. K., Environmentally assisted and fracture processes in high-purity aluminum,Acta Metall., 1988, 36: 2193.

    Article  Google Scholar 

  6. Gu, B., Zhang, J. W., Wan, F. R.et al., Thein-situ TEM observation of corrosion facilitating dislocation emission and motion for brass,Scripta Metall. Mater., 1995, 32: 637.

    Article  Google Scholar 

  7. Zhang, Y., Wang, Y. B., Chu, W. Y.et al., In-situ TEM observation of microcrack nucleation in titanium aluminide,Scripta Metall. Mater., 1994, 31: 279.

    Article  Google Scholar 

  8. Westwood, A. R. C., Preece, C. M., Kamdar, M. H.,Fracture (ed. Liebowitz, H.), Vol. 3, New York: Academic Press, 1971, 589–644.

    Google Scholar 

  9. Ohr, S. M., An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture,Mater. Sci. Eng., 1985, 72: 1.

    Article  Google Scholar 

  10. Hirth, J. P.,Theory of Dislocation, 2nd ed., New York: John Wiley, 1982.

    Google Scholar 

  11. Cherepanov, G. P.,Mechanics of Brittle Fracture, Moscow: Nauka, 1974.

    Google Scholar 

  12. Dewald, D. K., Lee, T. C., Robertson, I. M.et al., Dislocation structure ahead of advancing cracks,Scripta Metall., 1989, 3: 1307.

    Google Scholar 

  13. Sleeswyk, A. W.,Atomistics of Fracture (eds. Latanision, R. L., Pickens, J. R.), New York: Plenum Press, 1983.

    Google Scholar 

  14. Knott, J. F.,Fundamentals of Fracture Mechanics, London: Butterworths 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Wang, Y. & Chu, W. Chemisorption-facilitated dislocation emission and motion, and induced nucleation of brittle nanocrack. Sci. China Ser. E-Technol. Sci. 40, 661–669 (1997). https://doi.org/10.1007/BF02916852

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916852

Keywords

Navigation