Log in

Replacement of bacteriopheophytin in reaction centers fromRhodobacter sphaeroides RS601 with plant pheophytin

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers fromRhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated at 43.5°C for more than 15 min. The substitution of bacteriopheophytins in the reaction centers was 50% and 71% with incubation of 15 and 60 min, respectively. In the absorption spectra of pheophytin-replaced reaction centers (Phe RCs), bands assigned to the transition moments QX (537 nm) and QY (758 nm) of bacteriopheophytin disappeared, and three distinct bands assigned to the transition moments QX (509/542 nm) and QY (674 nm) of pheophytin appeared instead. Compared to that of the control reaction centers, the photochemical activities of Phe RCs are 78% and 71% of control, with the incubation time of 15 and 60 min. Differences might exist between the redox properties of Phe RC and of native reaction centers, but the substitution is significant, and the new system is available for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deisenhofer, J. E. D., Epp, O., Miki, K. et al., X-ray structure analysis of a membrane protein complex:electron density map at 3Å resolution and a model of the chromophore of the photosynthetic reaction center fromRs.viridis, J. Mol. Biol., 1984, 180: 385.

    Article  PubMed  CAS  Google Scholar 

  2. Macus, R. A., Electron transfer reactions in chemistry: Theory & experiment (Nobel lecture), Angewandte Chemie, 1993, 32: 1111.

    Article  Google Scholar 

  3. Stonell, M. H. B., Mcphillips, T. M., Rees, D. C. et al., Light induced structural changes and the mechanism of electron/proton transfer in the photosynthetic reaction center, Science, 1997, 276: 812.

    Article  Google Scholar 

  4. Abrensch, E. C., Paddock, M. L., Stowell, M. H. B. et al., Indentification of proton transfer pathways in the X-ray crystal structure of the bacterial reaction center fromRb.sphaeroides, Photosyn. Res., 1998, 55: 119.

    Article  Google Scholar 

  5. Morse, C. C., Keske, J. M., Warncke, K. et al., Electron Transfer mechanisms in reaction centers: Engineering guidelines, in The Photosynthetic Reaction Center (I) (eds. Deisenhofer, J., Norris, J. R.), San Diego: Academic Press, 1993, 1–19.

    Google Scholar 

  6. Struck, A., Scheer, H., Modified reaction centers fromRhodobacter sphaeroides R26: Exchange of monomeric bacterio-chlorophyll with 132-hydroxy-bacteriochlorophyll, FEBS Lett., 1990, 261(2): 385.

    Article  CAS  Google Scholar 

  7. Scheer, H., Struck, A., Bacterial reaction centers with modified tetrapyrrole chromophores, in The Photosynthetic Reaction Center (II) (eds. Deisenhofer, J., Norris, J. R.), San Diego: Academic Press, 1993, 157–192.

    Google Scholar 

  8. Michel, H., Deisenhofer, J., Relevance of the photosynthetic reaction centers from purple bacteria to photosystem II, Biochemistry, 1988, 27: 1.

    Article  CAS  Google Scholar 

  9. Zeng, X. H., et al., The characteristics of DCPIPH2→MV electron transport in chromatophores of RS601, Sinica Bichem. Biophysica Acta, 1997, 29(1): 46.

    CAS  Google Scholar 

  10. Hames, B. D., Rickwood, D., Gel Electrophoresis of Proteins: A Practical Approach, London: IRL Press Limited, 1981, 18–45.

    Google Scholar 

  11. Strain, H. H., Svec, W. A., Extraction, separation, estimation, and isolation of the Chlorophylls, in The Chlorophylls (eds. Vernon, L. P., Seely, G.R.), New York and London: Academic Press, 1966, 21–61.

    Google Scholar 

  12. Feher, G., Okamura, Y., Chemical composition and properties of reaction centers, in The Photosynthetic Bacteria (eds. Clayton, R. K., Sistrom, W. R.), New York: Plenum Press, 1978, 349–382.

    Google Scholar 

  13. Clayton, K. R., Spectroscopic analysis of bacteriochlorophyllsin vivo andin vitro, Photochemistry and Photobiology, 1966, 5: 669.

    Article  CAS  Google Scholar 

  14. Bacon, M. F., Separation of chlorophyll a and b and related compounds by thin-layer chromatography on cellulose, J. Chromatog., 1965, 17: 322.

    Article  CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. et al., Protein measurement with the Folin-phenol reagent, J. Biol. Chem., 1951, 265.

  16. Tiede, D. M., Vazquez, J. et al., Time resolved electrochromism associated with the formation of quinone anions in theRhodobacter sphaeroides R26 reaction center, Biochemistry, 1996, 35: 10763.

    Article  PubMed  CAS  Google Scholar 

  17. Parson, W. W., Reaction centers, in Chlorophylls (ed. Scheer, H.), Boca Raton: CRC Press, 1153–1179.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhe Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Wu, Y., Shen, Y. et al. Replacement of bacteriopheophytin in reaction centers fromRhodobacter sphaeroides RS601 with plant pheophytin. Sci. China Ser. C.-Life Sci. 43, 21–29 (2000). https://doi.org/10.1007/BF02881714

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02881714

Keywords

Navigation