Log in

Vegetation-environment relationships in a heavy metal-dry grassland complex

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Heavy-metal content is assumed to be the most important edaphic factor that determines vegetation composition on contaminated soil. We compared the effects of heavy metals on species composition and species richness in the heavy metal-dry grassland complex of the Bottendorf Hills (Central Germany) with those of other environmental factors. Based on 206 relevés, we distinguished nine communities of the classesKoelerio-Corynephoretea andFestuco-Brometea. Four communities in which the metallophytesArmeria maritima subsp.halleri andMinuartia verna subsp.hercynica occurred with high frequency were classified as heavy metal subassociations of four different dry grassland associations because of the dominance of dry grassland species. We measured the soil content of copper, zinc and lead, and the carbonate content, C/N ratio, pH and conductivity of the soil, soil depth and incident radiation per site. The first axis resulting from a DCA was positively correlated with the cover and height of the herb layer, the soil depth and soil carbonate content, and negatively with the soil content of copper, the proportion of rocks, the soil C/N ratio and incident radiation per site. The number of vascular plants, bryophyte and lichen species per plot increased with pH up to 7.5 and then decreased slightly. Species richness increased with carbonate content and conductivity of the soil and decreased with the soil C/N ratio. Heavy metal content of the soil and species richness were not correlated. The occurrence of the metallophytes was strongly related to the copper content of the soil. In conclusion our study has shown that heavy metal content is not necessarily the main factor determining the total composition and richness of grasslands on soil containing heavy metals. Heavy metal grasslands are not necessarily floristically distinct from “normal” dry grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway B.J. (ed.) (1999):Schwermetalle in Böden: Analytik, Konzentration, Wechselwirkungen. Springer, Berlin-Heidelberg.

    Google Scholar 

  • Antonovics J., Bradshaw A.D. &Turner R.G. (1971): Heavy metal tolerance in plants.Advances Ecol. Res. 7: 1–85.

    Article  Google Scholar 

  • Baumbach H. &Hellwig F.H. (2003): Genetic variation within and among metal-tolerant and non-tolerant populations ofArmeria maritima (Mill.)Willd. s.l. (Plumbaginaceae) in Central and Northeast Germany.Pl. Biol. 5: 186–193.

    Article  CAS  Google Scholar 

  • Baumbach H. (2005): Genetische Differenzierung mitteleuropäischer Schwermetallsippen vonSilene vulgaris, Minuartia verna undArmeria maritima unter Berücksichtigug biogeographischer, montanhistorischer und physiologischer Aspekte.Diss. Bot. 398: 1–128.

    Google Scholar 

  • Becker T. (1998): Die Pflanzengesellschaften der Felsfluren und Magerrasen im unteren Unstruttal (Sachsen-Anhalt).Tuexenia 18: 153–206.

    Google Scholar 

  • Becker T. (2003): Auswirkungen langzeitiger Fragmentierung auf Populationen am Beispiel der reliktischen SteppenrasenartAstragalus exscapus L. (Fabaceae).Diss. Bot. 380: 1–210.

    Google Scholar 

  • Bergmeier E., Härdtle W., Mierwald U., Nowak B. &Peppler C. (1990): Vorschläge zur syntaxonomischen Arbeitsweise in der Pflanzensoziologie.Kieler Not. Pflanzenk. Schleswig-Holstein Hamburg 20: 92–103.

    Google Scholar 

  • Bobbink R. (1991): Effects of nutrient enrichment in Dutch chalk grassland.J. Appl. Ecol. 28: 28–41.

    Article  Google Scholar 

  • Brown G. (1994): Soil factors affecting patchiness in community composition of heavy metal-contaminated areas of Western Europe.Vegetatio 115: 77–90.

    Google Scholar 

  • Brown G. (2001): The heavy-metal vegetation of north-western mainland Europe.Bot. Jahrb. Syst. 123: 63–110.

    Google Scholar 

  • Chytrý M., Tichý L. &Roleček J. (2003): Local and regional patterns of species richness in central European vegetation types along the pH/calcium gradient.Folia Geobot. 38: 429–442.

    Article  Google Scholar 

  • Clark R.K. &Clark S.C. (1981): Floristic diversity in relation to soil characteristics in a lead mining complex in the Pennines, England.New Phytol. 87: 799–815.

    Article  CAS  Google Scholar 

  • Colwell R.K. &Lees D.C. (2000): The mid-domain effect: geometric constraints on the geography of species richness.Trends Ecol. Evol. 15: 70–76.

    Article  PubMed  Google Scholar 

  • Deutscher Wetterdienst (2006): www.dwd.de/de/FundE/Klima/KLIS/daten/online/nat/index_mittelwerte.htm.

  • Dupré C., Wessberg C. &Diekmann M. (2002): Species richness in deciduous forests: effects of the species pools and environmental variables.J. Veg. Sci. 13: 505–516.

    Article  Google Scholar 

  • Ernst W. (1974):Die Schwermetallvegetation der Erde. Fischer, Stuttgart.

    Google Scholar 

  • Ernst W. (1976): Ökologische Grenze zwischenVioletum calaminariae undGentiano-Koelerietum.Ber. Deutsch. Bot. Ges. 89: 381–390.

    CAS  Google Scholar 

  • Ernst W.H.O. (1990): Mine vegetation in Europe. In:Shaw A.J. (ed.),Heavy metal tolerance in plants: Evolutionary aspects, CRC Press Inc., Boca Raton, pp. 21–37.

    Google Scholar 

  • Ernst W.H.O., Verkleij J.A.C. &Schat H. (1992): Metal tolerance in plants.Acta Bot. Neerl. 41: 229–248.

    CAS  Google Scholar 

  • Ewald J. (2003): The calcareous riddle: why are there so many calciphilous species in the Central European flora?Folia Geobot. 38: 357–366.

    Article  Google Scholar 

  • Grace J.P. (1999): The factors controlling species density in herbaceous plant communities: an assessment.Perspect. Pl. Ecol. Evol. Syst. 2: 1–28.

    Article  Google Scholar 

  • Grime J.P. (1979):Plant strategies and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Grubb P.J. (1987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In:Gee J.H.R. &Giller P.S. (eds.),Organization of communities, past and present, Blackwell, Oxford, pp. 99–118.

    Google Scholar 

  • Hall J.L. (2002): Cellular mechanisms for heavy metal detoxification and tolerance.J. Exp. Bot. 53: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Koperski M., Sauer M., Braun W. &Gradstein S.R. (2000): Referenzliste der Moose Deutschlands.Schriftenreihe Vegetationsk. 34: 1–519.

    Google Scholar 

  • Kruckeberg A.R. &Kruckeberg A.L. (1990): Endemic metallophytes: their taxonomic, genetic, and evolutionary attributes. In:Shaw A.J. (ed.),Heavy metal tolerance in plants: Evolutionary aspects, CRC Press Inc., Boca Raton, pp. 301–312.

    Google Scholar 

  • Kugler H. &Schmidt W. (eds.) (1988):Das Gebiet an der unteren Unstrut. Akademie-Verlag, Berlin.

    Google Scholar 

  • Lefébvre C. &Vernet P. (1990): Microevolutionary processes on contaminated deposits. In:Shaw A.J. (ed.),Heavy metal tolerance in plants: Evolutionary aspects, C.R.C. Press Inc., Boca Raton, pp. 285–300.

    Google Scholar 

  • Leipold J. (1992): Die Bottendorfer Kupferhütte im Wandel der Zeiten 1689–1813.Veröff. Kreisheimatmus. Bad Frankenhausen 14: 1–43.

    Google Scholar 

  • Lepš J. (2005): Diversity and ecosystem function. In:van der Maarel E. (ed.),Vegetation ecology, Blackwell, Oxford, pp. 199–237.

    Google Scholar 

  • Lindsay W.L. &Norwell W.A. (1978): Development of a DTPA soil test for zinc, iron, manganese and copper.Soil Sci. Soc. Amer. J. 42: 421–428.

    Article  CAS  Google Scholar 

  • Löbel S., Dengler J. &Hobohm C. (2006): Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition.Folia Geobot. 41: 377–393.

    Article  Google Scholar 

  • Löffler J. (1962): Die Kali- und Steinsalzlagerstätten des Zechsteins in der DDR, Teil 3: Sachsen-Anhalt.Freiberger Forschungshefte, Leipzig C97: 1–347.

    Google Scholar 

  • McCune B. &Keon D. (2002): Equations for potential annual direct incident radiation and head load.J. Veg. Sci. 13: 603–606.

    Article  Google Scholar 

  • Miller R.G. (1981):Simultaneous statistical inference. McGraw Hill, New York.

    Google Scholar 

  • Oberdorfer E. &Korneck D. (1993): Klasse:Festuco-Brometea. In:Oberdorfer E. (ed.),Süddeutsche Pflanzengesellschaften, Teil 2, Ed. 3, G. Fischer, Jena, pp. 86–180.

    Google Scholar 

  • Pärtel M. &Zobel M. (1999): Small-scale species richness in calcareous grasslands determined by the species pool, community age and shoot density.Ecography 22: 153–159.

    Article  Google Scholar 

  • Pärtel M. (2002): Local plant diversity patterns and evolutionary history at the regional scale.Ecology 83: 2361–2366.

    Google Scholar 

  • Partzsch M. (2000): Die Porphyrkuppenlandschaft des unteren Saaletals — Struturwandel ihrer Vegetation in den letzten vier Jahrzehnten.Tuexenia 20: 153–187.

    Google Scholar 

  • Pausas J.G. (1994): Species richness patterns in the understory of PyreneanPinus sylvestris forest.J. Veg. Sci. 5: 517–524.

    Article  Google Scholar 

  • Rennwald E. (ed.) (2000): Verzeichnis und Rote Liste der Pflanzengesellschaften Deutschlands.Schriftenreihe Vegetationsk. 35: 1–800.

    Google Scholar 

  • Scholz P. (2000): Katalog der Flechten und flechtenbewohnenden Pilze Deutschlands.Schriftenreihe Vegetationsk. 31: 1–298.

    Google Scholar 

  • Schubert R. (1953): Die Schwermetallpflanzengesellschaften des östlichen Harzvorlandes.Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. R. 3: 51–70.

    Google Scholar 

  • Schubert R. (1954): Die Pflanzengesellschaften der Bottendorfer Höhe.Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. R. 4: 99–120.

    Google Scholar 

  • Schulz A. (1912): Über die auf schwermetallhaltigen Boden wachsenden Phanerogamen Deutschlands.Jahres-Ber. Westfäl. Prov.-Vereins Wiss. 40: 209–227.

    Google Scholar 

  • Schuster B. &Diekmann M. (2003): Changes in species density along the soil pH gradient — Evidence from German plant communities.Folia Geobot. 38: 367–379.

    Article  Google Scholar 

  • Simon E. (1978): Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas.New Phytol. 81: 175–188.

    Article  CAS  Google Scholar 

  • Sjörs H. (1950): On the relation between vegetation and electrolytes in North Swedish mire waters.Oikos 2: 241–258.

    Article  Google Scholar 

  • SPSS Inc. (2001):SPSS 11.0 for Windows and Smart-ViewerTM. SPSS Inc., Chicago.

    Google Scholar 

  • ter Braak C.J.F. &Šmilauer P. (2002):CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination 4.5. Microcomputer Power, Ithaca.

    Google Scholar 

  • Tyler G. (1996): Soil chemistry and plant distributions in rock habitats of southern Sweden.Nordic J. Bot. 16: 609–635.

    Google Scholar 

  • Vekemans X. &Lefebvre C. (1997): On the evolution of heavy-metal tolerant populations inArmeria maritima: evidence from allozyme variation and reproductive barriers.J. Evol. Biol. 10: 175–191.

    Article  Google Scholar 

  • Wagenbreth O. &Steiner W. (1982):Geologische Streifzüge. Deutscher Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Walker D.A., Bockheim J.G., Chapin III F.S., Eugster W., Nelson F.E. &** C.L. (2001): Calcium-rich tundra, wildlife, and the “Mammoth Steppe”.Quatern. Sci. Rev. 20: 149–163.

    Article  Google Scholar 

  • WallisDeVries M.F., Poschlod P. &Willems J.H. (2002): Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna.Biol. Conservation 104: 265–273.

    Article  Google Scholar 

  • Weidauer K. & Hiller E. (1993):Schutzwürdigkeitsgutachten Landkreis Artern “Bottendorfer Höhe”. Unpubl. manuscript, Bottendorf.

  • Wilson J.B. (1988): The cost of heavy metal tolerance: an example.Evolution 42: 408–413.

    Article  Google Scholar 

  • Wisskirchen R. &Haeupler H. (1998):Standardliste der Farn-und Blütenpflanzen Deutschlands. Ulmer, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, T., Brändel, M. Vegetation-environment relationships in a heavy metal-dry grassland complex. Folia Geobot 42, 11–28 (2007). https://doi.org/10.1007/BF02835100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02835100

Keywords

Nomenclature

Navigation