Log in

Mathematical modeling of sulfide flash smelting process: Part II. Quantitative analysis of radiative heat transfer

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to describe the rate processes in an axisymmetric copper flash smelting furnace shaft. A particular feature of the model is the incorporation of the four-flux model to describe the radiative heat transfer by combining the absorbing, emitting, and anisotropic scattering phenomena. The importance of various subprocesses of the radiative heat transfer in a flash smelting furnace has been studied. Model predictions showed that the radiation from the furnace walls and between the particles and the surrounding is the dominant mode of heat transfer in a flash smelting furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-sectional area of the furnace

b :

backward scattering component, defined in Eq. [13]

C i :

terms defined by Eqs. [23] through [26]

C s :

scattering cross section in Eq. [44]

d :

particle diameter

d1 :

diameter of the single-entry burner

d f :

diameter of the furnace

f :

forward scattering component, defined in Eq. [12]

F:

radiative flux sum vector, Eq. [28]

I :

radiative flux

K :

radiative coefficient

l :

distance coordinate

l m :

mean beam length defined by Eq. [39]

L f :

furnace length

n :

particle number density

p(β) :

phase (or scattering) function occurring in Eq. [1]

P s :

particle size diameter defined by Eq. [42]

q rp :

radiative heat transfer rate for the particle phase

Q:

net radiation flux, Eq. [27]

Q r :

total volumetric radiative heat transfer rate, Eq. [32]

Q rg :

volumetric heat transfer rate by gas-phase radiation, Eq. [34]

r :

radial distance from the centerline

s :

sidewise scattering component, defined in Eq. [14]

T :

temperature

V :

volume of the furnace

W i :

terms defined by Eqs. [8] through [11]

x :

axial distance from the burner exit

β :

scattering angle

Γf :

term defined by Eq. [31]

ε :

emissivity

η a , η s :

absorption and scattering efficiencies of particles, respectively

λ :

wavelength of radiation

ρ :

reflectivity

σ :

Stefan-Boltzmann constant

ω0 :

albedo, defined in Eq. [15]

Ω:

solid angle

a :

absorption

8 :

gas

o :

inlet

s :

scattering

t :

extinction

w :

wall

+:

positive direction on a major axis

-:

negative direction on a major axis

References

  1. Y.B. Hahn and H.Y. Sohn:Metall. Trans. B, 1990, vol. 21B, pp. 945–58.

    CAS  Google Scholar 

  2. R. Siegel and J.R. Howell:Thermal Radiation Heat Transfer, 2nd ed., Hemisphere Publishing Co., New York, NY, 1981, pp. 412–83, 751-66.

    Google Scholar 

  3. L.D. Smoot and P.J. Smith:Coal Combustion and Gasification, Plenum Press, New York, NY, 1985, pp. 245–64, 349-71.

    Google Scholar 

  4. S.A.V. Fields: Ph.D. Dissertation, University of Utah, Salt Lake City, UT, 1981.

    Google Scholar 

  5. H.C. Hottel and A.F. Sarofim:Radiative Heat Transfer, McGraw-Hill Book Co., New York, NY, 1967, pp. 378–437.

    Google Scholar 

  6. C.-M. Chu and S.W. Churchill:J. Phys. Chem., 1955, vol. 59, pp. 855–63.

    Article  CAS  Google Scholar 

  7. L.D. Smoot and P.J. Smith:User’s Manual for a Computer Program for 2-Dimensional Coal Gasification or Combustion (PCGC-2), Combustion Laboratory, Brigham Young University, Provo, UT, 1983.

    Google Scholar 

  8. A.F. Sarofim and H.C. Hottel: Paper presented at the6th Int. Heat Transfer Conf., Toronto, ON, Canada, 1978.

  9. A.M. Godridge and A.W. Read:Prog. Energy Combustion Sci., 1976, vol. 2, pp. 83–95.

    Article  CAS  Google Scholar 

  10. A.D. Gosman and F.C. Lockwood:14th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1973, pp. 661–71.

    Google Scholar 

  11. S. Ruottu:Combust. Flame, 1979, vol. 34, pp. 1–11.

    Article  CAS  Google Scholar 

  12. L.D. Smoot and D.T. Pratt:Pulverized Coal Combustion and Gasification, Plenum Press, New York, NY, 1979, pp. 57–64, 83-104, 217-31.

    Google Scholar 

  13. L.L. House and L.L. Avery:J. Quant. Spectrosc. Radiat. Transfer, 1969, vol. 9, pp. 1579–91.

    Article  Google Scholar 

  14. R.G. Deissler:J. Heat Transfer, 1964, vol. 86, pp. 240–46.

    Google Scholar 

  15. G.R. Whitacre and R.A. McCann: ASME Paper No. 75-HT-9, 1975.

  16. W. Richter:Letters in Heat and Mass Transfer, 1974, vol. 1, pp. 83–94.

    Article  Google Scholar 

  17. S.H. Chan and C.L. Tien:Trans. ASME, May 1971, pp. 172-78.

  18. G. Mie:Ann. Phys., 1908, vol. 25, no. 3, pp. 377–445.

    Article  CAS  Google Scholar 

  19. Y.B. Hahn and H.Y. Sohn:Chem. Eng. Commun.: 1987, vol. 61, pp. 39–57.

    Article  CAS  Google Scholar 

  20. Y.B. Hahn and H.Y. Sohn:Metall. Trans. B, 1988, vol. 19B, pp. 871–84.

    CAS  Google Scholar 

  21. J. Asteljoki: Outokumpu Oy Metallurgical Research Center, Pori, Finland, personal communication, Feb. 1987.

  22. J. Makinen: Outokumpu Oy Metallurgical Division, Harjavalta, Finland, personal communication, Feb. 1987.

  23. F.R.A. Jorgensen:Proc. Australas. Inst. Min. Metall., 1983, vol. 288, pp. 37–46.

    CAS  Google Scholar 

  24. W.A. Gray, J.K. Kilham, and R. Muller:Heat Transfer from Flames, Eleck Science, London, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical Engineering, University of Utah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, Y.B., Sohn, H.Y. Mathematical modeling of sulfide flash smelting process: Part II. Quantitative analysis of radiative heat transfer. Metall Trans B 21, 959–966 (1990). https://doi.org/10.1007/BF02670266

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670266

Keywords

Navigation