Log in

Dam** characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 ternary shape memory alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dam** characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 ternary shape memory alloys (SMAs) have been systematically studied by resonant-bar testing and internal friction (IF) measurement. The dam** capacities of the B19′ martensite and the B2 parent phase for these ternary alloys are higher than those for the Ti50Ni50 binary alloy. The lower yield stress and shear modulus of these ternary alloys are considered to be responsible for their higher dam** capacity. For the same ternary alloy, the B19/B19′ martensite and R phase also have a higher dam** capacity than does the B2 parent phase. In the forward transformations of B2 → R, R → 519′, and B2 → 519′ for Ti50Ni50 and Ti50Ni49.5Fe0.5 alloys, the dam** capacity peaks appearing in the resonant-bar test are attributed to both stress-induced transformation and stress-induced twin accommodation. The lattice-softening phenomenon can promote the stress-induced transformation and enhance the dam** capacity peaks. The Ti50Ni40Cu10 alloy had an unusually high plateau of dam** capacity in the B19 martensite, which is considered to have arisen from the easy movement of twin boundaries of B19 martensite due to its inherently very low elastic modulus. The peaks appearing in the IF test for the Ti50Ni40Cu10 alloy are mainly attributed to the thermal-induced transformation due to T ⊋ 0 during the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Miyazaki, K. Otsuka, and Y. Suzuki:Scripta Metall., 1981, vol. 15, pp. 287–92.

    Article  CAS  Google Scholar 

  2. S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki:Proc. ICOMAT-82, J. Phys., 1982, vol. 43, pp. C4255–60.

    Google Scholar 

  3. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka:Metall. Trans. A, 1986, vol. 17A, pp. 115–20.

    CAS  Google Scholar 

  4. T. Tadaki, Y. Nakata, and K. Shimizu:Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 883–90.

    CAS  Google Scholar 

  5. S. Miyazaki, Y. Igo, and K. Otsuka:Acta Metall., 1986, vol. 34, pp. 2045–51.

    Article  CAS  Google Scholar 

  6. S.K. Wu, H.C. Lin, and T.S. Chou:Acta Metall., 1990, vol. 38, pp. 95–102.

    Article  CAS  Google Scholar 

  7. M. Nishida and T. Honma:Scripta Metall., 1984, vol. 18, pp. 1293–98.

    Article  CAS  Google Scholar 

  8. M. Nishida and C.M. Wayman:Scripta Metall., 1984, vol. 18, pp. 1389–94.

    Article  CAS  Google Scholar 

  9. S.K. Wu and H.C. Lin:Scripta Metall. Mater., 1991, vol. 25, pp. 1295–98.

    Article  Google Scholar 

  10. Y. Okamota, H. Hamanaka, F. Miura, H. Tamura, and H. Horikawa:Scripta Metall., 1988, vol. 22, pp. 517–20.

    Article  Google Scholar 

  11. T. Todoroki and H. Tamura:Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 83–94.

    Google Scholar 

  12. H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao:Acta. Metall. Mater., 1991, vol. 39, pp. 2069–81.

    Article  CAS  Google Scholar 

  13. H.C. Lin and S.K. Wu:Acta Metall. Mater., 1994, vol. 42, pp. 1623–30.

    Article  CAS  Google Scholar 

  14. E.K. Eckelmeyer:Scripta Metall., 1976, vol. 10, pp. 667–72.

    Article  CAS  Google Scholar 

  15. R. Wasilewski:Shape Memory Effects in Alloys, J. Perkin, ed., Plenum, New York, NY, 1975, pp. 245–71.

    Google Scholar 

  16. P.M. Ossi:Mater. Sci. Eng., 1986, vol. 77, p. L5.

    Article  Google Scholar 

  17. C.M. Hwang, M. Meichle, M.B. Salamon, and C.M. Wayman:Phil. Mag., 1983, vol. 47A, pp. 9–31, 31–62, and 177–91.

    Google Scholar 

  18. S.K. Wu and C.M. Wayman:Metallography, 1987, vol. 20, pp. 359–76.

    Article  CAS  Google Scholar 

  19. K. Enami, T. Yoshida, and S. Nenno:Proc. ICOMAT-86, I. Tamura, ed., Japan Institute of Metals, Nara, Japan, 1987, pp. 103–08.

    Google Scholar 

  20. K. Enami, E. Horii, and J. Takahashi:Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 430–37.

    CAS  Google Scholar 

  21. Y.C. Lo, S.K. Wu, and C.M. Wayman:Scripta Metall. Mater., 1990, vol. 24, pp. 1571–76.

    Article  CAS  Google Scholar 

  22. C.M. Hwang and C.M. Wayman:Scripta Metall., 1983, vol. 17, pp. 1345–50 and 1449–53.

    Article  CAS  Google Scholar 

  23. H.R. Edmonds and C.M. Hwang:Scripta Metall., 1986, vol. 20, pp. 733–37.

    Article  CAS  Google Scholar 

  24. Y.C. Lo, S.K. Wu, and H.E. Horng:Acta Metall. Mater., 1993, vol. 41, pp. 747–59.

    Article  CAS  Google Scholar 

  25. N.M. Matveeva, Yu.K. Kovneristyi, A.S. Savinov, V.P. Sivokha, and V.N. Khachin:J. Phys., 1982, vol. 43, pp. 249–53.

    Google Scholar 

  26. M. Piao, S. Miyazaki, and K. Otsuka:Mater. Trans. J. Inst. Met., 1992, vol. 33, pp. 346–53.

    CAS  Google Scholar 

  27. L.C. Zhao, T.W. Duerig, S. Justi, K.N. Melton, J.L. Proft, W. Yu, and C.M. Wayman:Scripta Metall., 1990, vol. 24, pp. 221–26.

    Article  CAS  Google Scholar 

  28. H.C. Lin, S.K. Wu, and M.T. Yeh:Metall. Trans. A, 1993, vol. 24A, pp. 2189–94.

    CAS  Google Scholar 

  29. I.G. Ritchie and Z.-L. Pan:Metall. Trans. A, 1991, vol. 22A, pp. 607–16.

    CAS  Google Scholar 

  30. K. Iwasaki and R. Hasiguti:Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 363–67.

    CAS  Google Scholar 

  31. O. Mercier, K.N. Melton, and Y.De. Preville:Acta Metall., 1979, vol. 27, pp. 1467–75.

    Article  CAS  Google Scholar 

  32. Y.T. Huang, G.P. Yang, and P. He:Scripta Metall., 1985, vol. 19, pp. 1033–44.

    Article  CAS  Google Scholar 

  33. N.Y. Chui and Y.T. Huang:Scripta Metall., 1987, vol. 21, pp. 447–52.

    Article  CAS  Google Scholar 

  34. O. Mercier, K.N. Melton, G. Gremaud, and J. Hagi:J. Appl. Phys., 1980, vol. 41, pp. 1833–34.

    Article  Google Scholar 

  35. A.I. Lotkov, A.V. Kuznetsov, V.N. Griskov, and A.A. Botaki:Proc. Int. Shape Memory Alloy Symp., Y. Chu, T.Y. Hsu, and T. Ko, eds., China Academic Publishers, Guilin, China, 1986, pp. 153–58.

    Google Scholar 

  36. J.F. Delorme, R. Schmid, M. Robin, and P. Gobin:J. Phys., 1971, vol. 32, pp. C2101–09.

    Google Scholar 

  37. W. Dejonghe, R. De Batist, and L. Delaey:Scripta Metall., 1976, vol. 10, pp. 1125–28.

    Article  CAS  Google Scholar 

  38. Y. Liu and P.G. McCormick:Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 417–22.

    CAS  Google Scholar 

  39. Y.C. Chang: Master's Thesis, Institute of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, U.C., Wu, S.K. & Chang, Y.C. Dam** characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 ternary shape memory alloys. Metall Mater Trans A 26, 851–858 (1995). https://doi.org/10.1007/BF02649082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649082

Keywords

Navigation