Log in

Looking around: 35 years of oculomotor modeling

  • Starkfest: Vision & Movement in Man and Machines
  • Complex Motor Behaviors
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Eye movements have attracted an unusually large number of researchers from many disparate fields, especially over the past 35 years. The lure of this system stemmed from its apparent simplicity of description, measurement, and analysis, as well as the promise of providing a “window in the mind.” Investigators in areas ranging from biological control systems and neurological diagnosis to applications in advertising and flight simulation expected eye movements to provide clear indicators of what the sensory-motor system was accomplishing and what the brain found to be of interest. The parallels between compensatory eye movements and perception of spatial orientation have been a subject for active study in visual-vestibular interaction, where substantial knowledge has accumulated through experiments largely guided by the challenge of proving or disproving model predictions. Even though oculomotor control has arguably benefited more from systems theory than any other branch of motor control, many of the original goals remain largely unfulfilled. This paper considers some of the promising potential benefits of eye movement research and compares accomplishments with anticipated results. Four topics are considered in greater detail: (i) the definition of oculomotor system input and output, (ii) optimization of the eye movement system, (iii) the relationship between compensatory eye movements and spatial orientation through the “internal model,” and (iv) the significance of eye movements as measured in (outer) space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrott, A. P., and L. R. Young. MIT/Canadian vestibular experiments on the Spacelab-1 mission: 6. vestibular reactions to lateral acceleration following ten days of weightlessness.Exp. Brain Res. 64:347–357, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Bahill, A. T., and L. Stark. The trajectories of saccadic eye movements.Sci. Am. 240:108–117, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Bahill, A. T., and J. D. McDonald. Smooth Pursuit eye movements in response to predictable target motions.Vision Res. 23:1573–1583, 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Bahill, A. T., M. R. Clark, and L. Stark. The main sequence, a tool for studying human eye movements.Math. Biosci. 24:191–204, 1975.

    Article  Google Scholar 

  5. Benson, A. J., and M. A. Bodin. Effect of orientation to the gravitational vertical on nystagmus following rotation about a horizontal axis.Acta Otolaryngol. 61:517–526, 1966.

    PubMed  CAS  Google Scholar 

  6. Young L. R., and D. Sheena. Eye movement measurement techniques. In:Encyclopedia of Medical Devices and Instrumentation, edited by J. Webster, New York: John Wiley & Sons, 1988, pp. 1259–1269.

    Google Scholar 

  7. Brodkey, J., and L. Stark. New direct evidence against intermittency in ampling in human smooth pursuit eye movements.Nature 218:273–275, 1968.

    Article  PubMed  CAS  Google Scholar 

  8. Buizza, A., A. Leger, J. Droulez, A. Berthoz, and R. Schmid. Influence of otolithic stimulation by horizontal linear acceleration on optokinetic nystagmus and visual motion perception.Exp. Brain Res. 39:165–176, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Clark, M. L., and L. Stark. Time optimal behavior of human saccadic eye movement.IEEE Trans. Autom. Contr. AC-20:345–348, 1975.

    Article  Google Scholar 

  10. Cohen, B. Vestibulo-ocular relations. In:The Control of Eye Movements, edited by P. Bach-y-Rita, C. C. Collins, and J. E. Hyde. San Diego: Academic Press, 1971, pp. 105–148.

    Google Scholar 

  11. Collins, C. Orbital mechanics. In:The Control of Eye Movements, edited by P. Bach-y-Rita, C. C. Collins, and J. E. Hyde. San Diego: Academic Press, 1971, pp. 283–325.

    Google Scholar 

  12. Cook, G., and L. Stark. Derivation of a model for the human eye positioning mechanisms.Bull. Math. Biophys. 29: 154–174, 1967.

    Article  Google Scholar 

  13. Ephrath, A. R., J. R. Tole, A. T. Stephens, and L. R. Young. Instrument scan—is it an indicator of the pilot's workload? Human Factors 24th Annual Meeting in Los Angeles, CA, October 13–14, 1980.

  14. Fender, D. H., and P. W. Nye. An investigation of the mechanisms of eye movement control.Kybernetik 1:81–88, 1961.

    Article  PubMed  CAS  Google Scholar 

  15. Fisher, D. F., R. A. Monty, and J. W. Senders.Eye Movements: Cognition and Visual Perception. Hillsdale, NJ: Laurence Erlbaum, 1981, 360 pp.

    Google Scholar 

  16. Henn, V., B. Cohen, and L. R. Young. Visual-vestibular interaction in motion perception and the generation of nystagmus.Neurosci. Res. Prog. Bull. 18(4):457–651, 1980.

    CAS  Google Scholar 

  17. Henn, V., L. R. Young, and C. Finley. Vestibular nucleus units in alert monkeys are also influenced by moving visual fields.Brain Res. 71:144–149, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Ito, M., T. Shiida, N. Nagi, and M. Yamamoto. Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus.Brain Res. 65:170–174, 1974.

    Article  PubMed  CAS  Google Scholar 

  19. Jury, E. I.Sampled Data Control Systems. New York: John Wiley & Sons, 1985, 453 pp.

    Google Scholar 

  20. Kornilova, L. N., Ya. Yakelova, I. K. Tarasov, G. I. Gorgiladze. Vestibular dysfunction in cosmonauts during adaptation to zero-g and readaptation to 1 g. Proc. of 5th Annu. Meeting, IUPS Commission on Gravitational Physiology, vol. 26, 1983, p. 35.

  21. Lathan, C. E., C. Wall, and L. R. Harris. Human eye movement response to z-axis linear acceleration: the effect of varying the phase relationships between visual and vestibular inputs.Exp. Brain Res. 1995, in press.

  22. Markham, C. H., and S. G. Diamond. Further evidence to support disconjugate torsions as a predictor of space motion sickness.Aviation Space Environ. Med. 63:118–121, 1992.

    CAS  Google Scholar 

  23. Merfeld, D. M., L. R. Young, G. D. Paige, and D. L. Tomko. Three dimensional eye movements of squirrel monkeys following post-rotatory tilt.J. Vestibular Res. 3(2): 123–139, 1993.

    CAS  Google Scholar 

  24. McCulloch, W. S., and T. Pitts. A logical calculus of the ideas imminent in nervous activity.Bull. Math. Biophys. 5:115–133, 1943.

    Article  Google Scholar 

  25. McCulloch, W. S.Embodiments of Mind. Cambridge: MIT Press, 1965, 402 pp.

    Google Scholar 

  26. Miles, F. A., and S. G. Lissberger. Plasticity in the vestibulo-ocular reflex: a new hypothesis.Annu. Rev. Neurosci. 4:273–299, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Noton, D., and L. Stark. Scan paths in eye movements during perception.Science 171:308–311, 1971.

    Article  PubMed  CAS  Google Scholar 

  28. Oman, C. M., and M. D. Balkwill. Horizontal angular VOR, nystagmus dum**, and sensation duration in Spacelab SLS-1 crewmembers.J. Vestibular Res. 3: 315–330, 1993.

    CAS  Google Scholar 

  29. Parker, D. E., M. F. Reschke, A. P. Arrott, J. L. Homick, and B. K. Lichtenberg. Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for preflight adaptation training. Aviation Space Environ. Med. 56:601–605, 1985.

    CAS  Google Scholar 

  30. Richter, H. R. Principles de la photo-electro-nystagmographie.Rev. Neurol. 94:138, 1956.

    PubMed  CAS  Google Scholar 

  31. Robinson, D. A. The mechanics of human smooth pursuit eye movement.J. Physiol. 180:569–591, 1965.

    PubMed  CAS  Google Scholar 

  32. Robinson, D. A. Oculomotor control signals. In:Basic Mechanisms of Ocular Motility and Their Clinical Implications, edited by G. Lennerstrand and P. Bach-y-Rita. New York: Pergamon Press, 1975.

    Google Scholar 

  33. Schultheiss, L. W., and D. Robinson. Directional plasticity of the vestibulo-ocular reflex in the cat. In:Vestibular and Oculomotor Physiology: Annals of the New York Academy of Sciences Vol 374, edited by B. Cohen. New York: The New York Academy of Sciences, 1981, pp. 504–512.

    Google Scholar 

  34. Simpson, J. I., and W. Graf. Eye muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. InVestibular and Oculomotor Physiology: Annals of the New York Academy of Sciences Vol 374, edited by B. Cohen. New York: The New York Academy of Sciences, 1981, pp. 20–30.

    Google Scholar 

  35. Stark, L. Stability, oscillations and noise in the human pupil servomechanism.Proc. IRE 47:1925–1939, 1959.

    Article  Google Scholar 

  36. Stark, L., G. Vossius, and L. Young. Predictive control of eye tracking movements.IRE Trans. Hum. Factors Eng. HFE-3:52–57, 1962.

    Article  Google Scholar 

  37. Steinman, R. M., A. A. Skavenski, and R. V. Sansbury. Effect of lens accommodation on holding the eye in place without saccades.Vision Res. 9:1167–1171, 1969.

    Article  Google Scholar 

  38. Tse, M. T. Ocular Torsion During Linear Acceleration in Space. Cambridge: Massachusetts Institute of Technology, S.B. Thesis, 1992.

    Google Scholar 

  39. Teiwes, W., A. H. Clarke, D. M. Merfeld, C. M. Oman, H. Scherer, and L. R. Young. Comparison of the 3 dimensional video-based eye movement measurement technique video-oculography (VOG) with the scleral search coil technique (SSC), abstract 118. Aerospace Medical Assoc. Annual Meeting, Toronto, Canada 1993, p. A20.

  40. Vogel, H., and J. R. Kass. European vestibular experiments on the Spacelab-1 mission: 7. ocular counterrolling measurements pre- and post-flight.Exp. Brain Res. 64:284–290, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Vossius, G. Das system der augenbewegung.Z. Biol. 112: 27–57, 1960.

    PubMed  CAS  Google Scholar 

  42. Westheimer, G. Mechanism of saccadic eye movements.A.M.A. Arch. Ophthal. 52:710–724, 1954.

    CAS  Google Scholar 

  43. Wiener, N.Cybernetics. New York: John Wiley & Sons, 1948, 194 pp.

    Google Scholar 

  44. Yasui, S., and L. R. Young. On the predictive control of foveal eye tracking and slow phases of optokinetic and vestibular nystagmus.J. Physiol. 347:17–33, 1984.

    PubMed  CAS  Google Scholar 

  45. Yasui, S., and L. R. Young. Perceived visual motion as effective stimulus to pursuit eye movement system.Science 190:906–908, 1975.

    Article  PubMed  CAS  Google Scholar 

  46. Young, L. R., D. K. Jackson, N. Groleau, and S. A. Modestino. Multisensory integration in microgravity. In:Sensing and Controlling Motion: Vestibular and Sensorimotor Function: Annals of the New York Academy of Sciences Vol 466, edited by B. Cohen, D. L. Tomko, and F. E. Guedry. New York: The New York Academy of Sciences, 1992, pp. 783–794.

    Google Scholar 

  47. Young, L. R. A Sampled Data Model for Eye Tracking Movements. Cambridge: Massachusetts Institute of Technology, Sc.D. Thesis, 1962.

    Google Scholar 

  48. Young, L. R. Measuring eye movements.Am. J. Med. Electron. 300–306, 1963.

  49. Young, L. R. Pursuit eye movement—what is being pursued? In:Control of Gaze by Brain Stem Neurons, Developments in Neuroscience, edited by R. Baker and A. Berthoz. 1977, pp. 29–36.

  50. Young, L. R. The sampled data model and foveal dead zone for saccades. In:Models of Oculomotor Behavior and Control, edited by B. L. Zuber. Boca Raton: CRC Press, 1981, pp. 43–74.

    Google Scholar 

  51. Young, L. R. Adaptation to modified otolith input. In:Adaptive Mechanisms in Gaze Control, edited by A. Berthoz and G. Melvill Jones. Amsterdam: Elsevier Science Publishers, 1985, pp. 115–162.

    Google Scholar 

  52. Young, L. R., and L. Stark. A discrete model for eye tracking movements.IEEE Trans. Military Electron. MIL-7: 113–115, 1963.

    Google Scholar 

  53. Young, L. R., and L. Stark. Variable feedback experiments testing a sampled data model for eye tracking movements.IEEE Trans. Hum. Factors Electron. HFE-4:38–51, 1963.

    Google Scholar 

  54. Young, L. R., J. D. Forster, and N. A. J. Van Houtte. A revised stochastic sampled data model for eye tracking movements. 4th Annual Conference on Manual Control, NASA SP-192, 1968, pp. 489–509.

  55. Young, L. R., C. M. Oman, D. G. D. Watt, K. E. Money, and B. K. Lichtenberg. Spatial orientation in weightlessness and readaptation to earth's gravity.Science 225:205–208, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Young, L. R., B. K. Lichtenberg, A. P. Arrott, T. A. Crites, C. M. Oman, and E. R. Edelman. Ocular torsion on Earth and in Weightlessness.Annals of the New York Academy of Sciences Vol 374, edited by B. Cohen. New York: The New York Academy of Sciences, 1981, pp. 80–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L.R. Looking around: 35 years of oculomotor modeling. Ann Biomed Eng 23, 456–466 (1995). https://doi.org/10.1007/BF02584445

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584445

Keywords

Navigation