Log in

Constitutive equation of co-rotational derivative type for anisotropic-viscoelastic fluid

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A constitutive equation theory of Oldroyd fluid B type, i.e. the co-rotational derivative type, is developed for the anisotropic-viscoelastic fluid of liquid crystalline (LC) polymer. Analyzing the influence of the orientational motion on the material behavior and neglecting the influence, the constitutive equation is applied to a simple case for the hydrodynamic motion when the orientational contribution is neglected in it and the anisotropic relaxation, retardation times and anisotropic viscosities are introduced to describe the macroscopic behavior of the anisotropic LC polymer fluid. Using the equation for the shear flow of LC polymer fluid, the analytical expressions of the apparent viscosity and the normal stress differences are given which are in a good agreement with the experimental results of Baek et al. For the fiber spinning flow of the fluid, the analytical expression of the extensional viscosity is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han SF. Constitutive Equation and Computatinal Analytical Theory of Non-Newtonian Fluids. Bei**g: Science Press, 2000

    Google Scholar 

  2. Ericksen JL. Conservation laws for liquid crystals.Trans Soc Rheol, 1961, 5: 23–34

    Article  MathSciNet  Google Scholar 

  3. Leslie FM. Theory of flow phenomena in liquid crystals. In: Brown GH ed. Advances in Liquid Crystals, Vol 1, New York: Academic, 1979. 1

    Google Scholar 

  4. Chandrasekhar S. Liquid Crystals. Cambridge Univ. Press, 1977

  5. Doi M, Edwards SF. The Theory of Polymer Dynamics, Oxford London, 1986

  6. Marrucci G, Maffettonr PL. Description of the liquid-crystalline phase of rodlike polymer at high shear rates.Macromolecules, 1999, 22: 4076–4082

    Article  Google Scholar 

  7. Onogi S, Asada T. Rheology and rheo-optics of polymer liquid crystal. In: Astria G, Marrucci G, Nicolai eds. Rheology. New York: Plenum, 1980. 127–147

    Google Scholar 

  8. Baek SG, Magda JJ, Larson RG. Rheological differences among liquid-crystalline polymers I. The first and second normal stress differences of PBG solutions.J of Rheology, 1993, 37(6): 1201–1224

    Article  Google Scholar 

  9. Baek SG, Magda JJ, Larson RG, et al. Rheological differences among liquid-crystalline polymers II. T Disappearance of nagativeN 1 in densely packed lyotropic and thermotropes.J of Rheology, 1994, 38(5): 1473–1503

    Article  Google Scholar 

  10. Walker L, Wagner N. Rheology of region I flow in a Lyotropic liquid crystal polymer: The effects of defect texture.J of Rheology, 1994, 38(5): 1525–1547

    Article  Google Scholar 

  11. Moldenaers P, Mewis J. On the nature of viscoelasticity in polymeric liquid crystals.J of Rheology, 1993, 37(2): 367–380

    Article  Google Scholar 

  12. Moldenaers P, Mewis J. Relaxational phenomena and anisotropy in isotropic polymeric liquid crystal.J Non-Newtonian Fluid Mech, 1990, 34: 359–374

    Article  Google Scholar 

  13. Baleo JN, Vincent M, Navard P. Finite element simulation of flow and dirctor orientation of viscous anisotropic fluids in complex 2D geometries.J of Rheology, 1982, 36(4): 663–701

    Article  Google Scholar 

  14. Brave AV, Menon RK, Armstrong RC, et al. A constitutive equation for liquid crystalline polymer solution.J of Rheology, 1982, 36(4): 663–701

    Google Scholar 

  15. Volkov VS, Kulichikhin VG. Anisitropic viscoelasticity of liquid crystaline polymers.J Rheol, 1990, 34(3): 281–293

    Article  Google Scholar 

  16. Han SF. Constitutive equation of Maxwell-Oldroyd type for liquid crystalline polymer and its fluid flow. In: Zhuang FG ed. Proc of 3rd Int Conference on Fluid Mechanics. Bei**g: Bei**g Institute of Technology Press, 1998. 723–728

    Google Scholar 

  17. Han SF. Computational spectral approach to unsteady rotating flow of non-Newtonian fluid. In: Cui EJ ed. Proc of 8th Asian Congress of Fluid Mechanics. Bei**g: International Academic Publishers, 1999. 582–586

    Google Scholar 

  18. Han SF. Constitutive equation of liquid crystalline polymer anisotropic viscoelastic fluid.Acta Mechanica Sinica, 2001, 33(5): 588–600

    Google Scholar 

  19. Han SF. Rheology of liquid crystalline polymer—Front direction in rheology.Mechanics in Engineering, 2001, 23(3): 1–6

    MATH  Google Scholar 

  20. Gotsis AD, Odriozola MA. Extensional viscosity of a thermotropic liquid crystalline polymer.J Rheol, 2000, 44(5): 1205–1225

    Article  Google Scholar 

  21. Han SF, Wang YB. Nematic behavior of liquid crystalline polymer and its rheological character.Mechanics in Engineering, 2003, 25(2): 12–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (19832050 and 10372100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shifang, H. Constitutive equation of co-rotational derivative type for anisotropic-viscoelastic fluid. Acta Mech Sinica 20, 46–53 (2004). https://doi.org/10.1007/BF02493572

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02493572

Key Words

Navigation