Log in

Effect of sodium hypophosphite on longevity and nucleic acid content in aging Zaprionus paravittiger

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The median and maximum life spans of the drosophilid insect Zaprionus paravittiger reared on corn meal agar medium at 26±2°C were 35 and 70 days for males and 40 and 77 days for females, respectively. The addition of different concentrations of an antioxidant, sodium hypophosphite (SHP), in the diet resulted in increased median and maximum life spans of both the sexes: maximum by 21.7% and 34.2% in males and by 27.5% and 27.2% in females, respectively. DNA and RNA contents were found to decrease in normal as well as SHP fed insects, but the rate of decline was significantly lower in the latter. The results suggest that the damaging effect of free radicals is diminished by the antioxidizing property of SHP, thus supporting the free radical theory of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutteridge, J.M.C. and Toeg, D.: Iron dependent free radical damage to DNA and deoxyribose: separation of thiobarbituric acid reactive intermediates. Int. J. Biochem., 14: 891–894, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Ennever, J.F., Carr, H.S., and Speck, W.T.: Potential for genetic damage from multivitamin solutions exposed to phototherapy illumination. Pediatr. Res., 17:192–194, 1983.

    PubMed  CAS  Google Scholar 

  3. Szabad, J., Soos, J., Polgar, G., and Hejja, G.: Testing the mutagenicity of malondialdehyde and formaldehyde by Drosophila melanogaster mosaic and the sex linked recessive lethal tests. Mutat. Res., 113:117–134, 1983.

    PubMed  CAS  Google Scholar 

  4. Yagi, M., Nishimura, T., Suzuki, H., and Tanaka, N.: Chartreusim, an antitumor glycoside antibiotic, induces DNA strand scission. Biochem. Biophys. Res. Commun., 98: 642–647, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Raeva, N.F.: Role of malondialdehyde and similar compounds in the formation of cross links in irradiated DNA. Radiobiologica, 20: 664–670, 1980.

    CAS  Google Scholar 

  6. Harman, D.: Free radical theory of aging: Beneficial effect of antioxidants on the life span of male NZB mice: Role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of system lupus erythematosus. Age, 3: 64–73, 1980.

    Article  CAS  Google Scholar 

  7. Zuckerman, B.M. and Giest, M.A.: Effect of nutrition and chemical agents on lipofuscin formation, in Age pigments, edited by Sohal, R.S., Elsevier/North Holland Biomedical Press, 1981.

  8. Harman, D.: Nutritional implications of the free radical theory of aging. J. Amer. Coll. Nutr., 1: 27–34, 1982.

    CAS  Google Scholar 

  9. Sacher, G.A.: Life table modifications and life span prolongation, in Handbook of Biology of Ageing, edited by Finch, C.E., New York, Van Nostrand, 1977, pp. 582–638.

    Google Scholar 

  10. Sohal, R.S.: Aging in insects, in Comprehensive Insect Physiology: Biochemical and Pharmacology, edited gy Kerkut, G.A. and Gilbert, L.I., New York, Pergamon Press, 1985, pp. 596–626.

    Google Scholar 

  11. Senesi, N., Chen, Y. and Schnitzer, M.: The role of free radicals in the oxidation and reduction of fulvic acid. Soil Biol. Biochem., 9:397–404, 1978.

    Article  Google Scholar 

  12. El-Ahraf, A., Willis, W.V. and Vinjamoori, D.V.: Sodium hypophosphite as reducing agent for determination of submicrogram quantities of mercury in animal feeds and manures. J. Assoc. Off. Anal. Chem., 64:9–13, 1981.

    PubMed  CAS  Google Scholar 

  13. Seward, R.A., Deibel, R.H. and Lindsay, R.C.: Effect of potassium sorbate and other anti-botulinal agents on germination and outgrowth of Clostridium botulinum type E spores in microcultures. Appl. Environ. Microbiol., 44:1212–1221, 1982.

    PubMed  CAS  Google Scholar 

  14. Nakaize, N. Sh., Kuzmin, V.I., Rozantsev, E.G., and Obukhova, L.K.: Effect of some antioxidant on the life span of D. melanogaster. Izu. Akad. Nauk SSSR Ser. Biol., 6: 926–929, 1980.

    Google Scholar 

  15. Sharma, S.P. and Wadhwa, R.: Effect of butylated hydroxytoluene (BHT) on the life span of Drosophila bipectinata. Mech. Age. Develop., 23: 67–72, 1983.

    Article  CAS  Google Scholar 

  16. Jit, I.: Studies on some aspects of ageing in banana fruit fly, Zaprionus paravittiger (Diptera: Drosophilidae). Ph.D. Thesis submitted to Guru Nanak Dev University, Amritsar, 1983.

    Google Scholar 

  17. Harman, D., Heidrick, M.J., and Eddy, D.E.: Free radical theory of aging: Effect of free radical reaction inhibitors on the immune response. J. Amer. Geriatr. Soc., 25:400–407, 1977.

    CAS  Google Scholar 

  18. Walford, R.L.: Studies on immunogerontology. J. Am. Geriatr. Soc., 30:617–625, 1982.

    PubMed  CAS  Google Scholar 

  19. Tolmasoff, J.M., Ono, T., and Cutler, R.G.: Superoxide dismutase: correlation with life span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. USA, 27:2777–2781, 1980.

    Google Scholar 

  20. Sohal, R.S., Farmer, K.J., Allen, R.G., and Ragland, S.S.: Effects of diethyldithiocarbamate on life span, metabolic rate, superoxide dismutase, cataiase, inorganic peroxides and glutathione in the adult male housefly, Musca domestica. Mech. Age. Develop., 24:175–183, 1984.

    Article  CAS  Google Scholar 

  21. Lang, C.A., Lau, H.Y., and Jefferson, D.J.: Protein and nucleic acid changes during growth and ageing in the mosquito. Biochem. J., 95:372–377, 1965.

    PubMed  CAS  Google Scholar 

  22. Blevins, R.D.: Cellular response in Aedes aegypti (Diptera: Culcidae) during growth, development of aging. Ann. Entomol. Soc. Amer., 66:769–773, 1973.

    Google Scholar 

  23. Vandenhaute, J., Claes-Reckinger, N. and Delcour, J.: Age-related functional alterations of mouse liver ribosomes. Exp. Gerontol., 18:355–363, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Samis, H.J. Jr., Erk, F.C., and Baird, M.B.: Senescence in Drosophila, I. Sex differences in nucleic acid, protein and glycogen levels as a function of age. Exp. Gerontol., 6:9–18, 1971.

    Article  PubMed  CAS  Google Scholar 

  25. Massie, H.R., James, R.C., and Williams, T.R.: Loss of mitochondrial DNA with ageing in Swedish C strain of Drosophila melanogaster. Age, 4:42–46, 1981.

    Article  CAS  Google Scholar 

  26. Wadhwa, R. and Sharma, S.P.: Changes in nucleic acid content in ageing Drosophila bipectinata. Exp. Gerontol., 19(3):199–203, 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Fleming, J.E., Miquel, J., Cottrell, S.F., Yengoyan, L.S., and Economos, A.C.: Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontol., 28:44–53, 1982.

    CAS  Google Scholar 

  28. Ruiz-Torres, A. and Tapia, A.L.: Aging as inversion of growth: Reaction of uric acid. Aktuel Gerontol., 11:17–18, 1981.

    PubMed  CAS  Google Scholar 

  29. Little, J.B.: Relationship between DNA repair capacity and cellular aging. Gerontology, 22:28–55, 1976.

    PubMed  CAS  Google Scholar 

  30. Turturro, A., and Hart, W.: DNA repair mechanisms in aging, in Comparative pathobiology of major age-related diseases: Current status and research frontiers, New York, Alan R. Liss, Inc., 1984, pp. 19–45.

    Google Scholar 

  31. Harris, J.B., Schaefer, V.G., a Miksche, J.P.: Influence of aging on nuclear DNA in corn leaves. Plant and Cell Physiol., 25:225–231, 1984.

    CAS  Google Scholar 

  32. Nohl, H. and Hegner, D.: Do mitochondria produce oxygen radicals in vitro? Eur. J. Biochem., 82: 563–567, 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Hart, R.W., D’Ambrosia, S.M., Ng, K.J., and Modak, S.P.: Longevity, stability and DNA repair. Mech. Age. Develop., 9:203–223, 1979.

    Article  CAS  Google Scholar 

  34. Gartner, L.P.: Radiation-induced shortening in Drosophila (Dipt., Drosophilidae). Gerontologia, 19: 295–302, 1973.

    PubMed  CAS  Google Scholar 

  35. Lints, F.A.: Genetic influences on life span in Drosophila and related species. Rev. Biol. Res. in Aging, 1:51–72, 1983.

    CAS  Google Scholar 

  36. Sharma, S.P. and Sharma, G.: Age-related protein changes in bruchids. Indian J. Exp. Biol., 17: 1197–1200, 1979.

    Google Scholar 

  37. Von Hahn, H.P.: Distribution of DNA and RNA in the brain during the life span of the albino rat. Gerontologia, 12:18–29, 1966.

    Article  CAS  Google Scholar 

  38. Volkin, E. and Cohn, W.E.: Estimation of nucleic acids, in Methods in Biochemical Analysis, Vol. 1, 1967, edited by Glick, D., New York, Interscience, 1967, pp. 287–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sharma, S.P., Wadhwa, R. Effect of sodium hypophosphite on longevity and nucleic acid content in aging Zaprionus paravittiger . AGE 9, 79–84 (1986). https://doi.org/10.1007/BF02432272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02432272

Keywords

Navigation