Log in

Linkage of acetylcholinesterase insensitivity to methyl parathion resistance inHeliothis virescens

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Resistance to methyl parathion insecticide has evolved in the tobacco budworm,Heliothis virescens, and several biochemical mechanisms have been identified in various strains. Reduced sensitivity of acetylcholinesterase to inhibition by methyl paraoxon, the active metabolite of the insecticide, is controlled by a single autosomal locus,AceIn. We report thatAceIn is genetically linked to methyl parathion resistance, which is expressed as a dominant gene. Methyl parathionresistant and -susceptible strains were intercrossed and the resulting mixed colony was heterozygous atAceIn. Pair matings from the mixed colony were chosen, on the basis ofAceIn genotype only, to establish strains Ace-S and Ace-R, homozygous forAceIn SS andAceIn RR, respectively. The Ace-R strain was 15.9-fold resistant compared toAceIn SS, while hybrid progeny expressed 24.6-fold resistance, demonstrating dominant inheritance of resistance. When progeny of the backcross (Ace-S×Ace-R) to Ace-S were exposed to a discriminating dose of methyl parathion, 24.5% survived as predicted by the model of a single resistance gene. Survivors displayed only theAceIn RS genotype, demonstrating a linkage disequilibrium which was highly significant. Assuming that no other resistance genes are linked closely toAceIn, it would appear thatAceIn is a powerful gene for resistance, conferring a resistance proportional to the slower rate of inhibition in the resistant enzyme. The contribution ofAceIn to resistance relative to detoxicative genes and the possible interaction of resistance genes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayad, H., and Georghiou, G. P. (1975). Resistance to organophosphates and carbamates inAnopheles albimanus based on reduced sensitivity of acetylcholinesterase.J. Econ. Entomol. 68295.

    PubMed  CAS  Google Scholar 

  • Brogdon, W. G., and Barber, A. M. (1987). Microplate assay of acetylcholinesterase inhibition kinetics in single-mosquito homogenates.Pest. Biochem. Physiol. 29252.

    Article  CAS  Google Scholar 

  • Brown, A. W. A. (1959). Inheritance of insecticide resistance and tolerance.Misc. Publ. Entomol. Soc. Am. 120.

    Google Scholar 

  • Brown, T. M. (1990). Biochemical and genetic mechanisms of insecticide resistance. In Green, M. B., Moberg, W. K., and LeBaron, H. (eds.),Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies ACS Symposium Series No. 421, American Chemical Society, Washington, DC, pp. 61–76.

    Google Scholar 

  • Brown, T. M. (1991). Resistant acetylcholinesterase of the tobacco budworm,Heliothis virescens.Rev. Pest. Toxicol. 1185.

    CAS  Google Scholar 

  • Brown, T. M. (1992). Methods to evaluate adverse consequences of genetic changes caused by pesticides. In Tardiff, R. G. (eds.),Methods to Assess Adverse Effects of Pesticides on Non-target Organisms John Wiley & Sons, New York, pp. 221–242.

    Google Scholar 

  • Brown, T. M., and Bryson, P. K. (1992). Selective inhibitors of methyl parathion-resistant acetylcholinesterase fromHeliothis virescens.Pest. Biochem. Physiol. 44155.

    Article  CAS  Google Scholar 

  • Brown, T. M., Bryson, P. K., and Payne, G. T. (1982). Pyrethroid susceptibility in methyl parathion-resistant tobacco budworm in South Carolina. J. Econ. Entomol.75301.

    CAS  Google Scholar 

  • Brown, T. M., Bryson, P. K., Arnette, F., Roof, M., Mallett, J. L. B., Graves, J. B., and Nemec, S. J. (1996a). Surveillance of resistant acetylcholinesterase inHeliothis virescens. In Brown, T. M. (ed.),Molecular Genetics and Evolution of Pesticide Resistance ACS Symposium Series No. 645, American Chemical Society, Washington, DC (in press).

    Google Scholar 

  • Brown, T. M., Bryson, P. K., and Payne, G. T. (1996b). Synergism by propynyl aryl ethers in permethrin-resistant tobacco budworm larvae,Heliothis virescens.Pest. Sci. 43323.

    Article  Google Scholar 

  • Bull, D. L. (1981). Factors that influence tobacco budworm resistance to organophosphorus insecticides.Bull. Entomol. Soc. Am. 27193.

    Google Scholar 

  • Byrne, F. J., and Devonshire, A. L. (1993). Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whiteflyBemisia tabaci (Genn.).Pest. Biochem. Physiol. 4534.

    Article  CAS  Google Scholar 

  • Casida, J. E. (1970). Mixed-function oxidase involvement in the biochemistry of insecticide synergists.J. Agr. Food Chem. 18753.

    Article  CAS  Google Scholar 

  • Devonshire, A. L. (1980). Insecticide resistance caused by decreased sensitivity of acetylcholinesterase to inhibition.Insect Neurobiology and Pesticide Action (Neurotox 79), Soc. Chem. Ind., London, pp. 473–480.

    Google Scholar 

  • Devonshire, A. L., and Moores, G. D. (1984). Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica).Pest. Biochem. Physiol. 21336.

    Article  CAS  Google Scholar 

  • Devore, J., and Peck, R. (1986).Statistics—The Exploration and Analysis of Data, West, St. Paul, MN, p. 86.

  • Forrester, N. W., and Cahill, M. (1987). Management of insecticide resistance inHeliothis armigera (Hubner) in Australia. In Ford, M. G., Holloman, D. W., Khambay, B. P. S., and Sawicki, R. M. (eds.),Combating Resistance to Xenobiotics: Biological and Chemical Approaches Ellis Horwood, Chichester, England, pp. 127–137.

    Google Scholar 

  • Fournier, D., and Mutero, A. (1994). Modification of acetylcholinesterase as a mechanism of resistance to insecticides.Comp. Biochem. Physiol. 108C(1):19.

    Google Scholar 

  • Fournier, D., Berrada, S., and Bongibault, V. (1996).Drosophila cholinesterase. In Brown, T. M. (ed.),Molecular Genetics and Evolution of Pesticide Resistance ACS Symposium Series No. 645, American Chemical Society, Washington, DC (in press).

    Google Scholar 

  • Gunning, R. V., Ferris, I. G., and Easton, C. S. (1994). Toxicity, penetration, tissue distribution, and metabolism of methyl parathion inHelicoverpa armigera andH. punctigera (Lepidoptera: Noctuidae).J. Econ. Entomol. 871180.

    PubMed  CAS  Google Scholar 

  • Hama, H. (1980). Mechanism of insecticide resistance in green rice leafhopper and small brown planthopper.Rev. Plant. Protect. Res. 1354.

    CAS  Google Scholar 

  • Hama, H., and Hosoda, A. (1983). High aliesterase activity and low acetylcholinesterase sensitivity involved in organophosphorus and carbamate resistance of the brown planthopper,Nilaparvata lugens Stal (Homoptera: Delphacidae).Appl. Entomol. Zool. 18475.

    CAS  Google Scholar 

  • Hoffmann, F., Fournier, D., and Spierer, P. (1992). Minigene rescues acetylcholinesterase lethal mutations inDrosophila melanogaster.J. Mol. Biol. 22317.

    Article  PubMed  CAS  Google Scholar 

  • Ioannidis, P. M., Grafius, E. J., Wierenga, J. M., Whalon, M. E., and Hollingworth, R. M. (1992). Selection, inheritance and characterization of carbofuran resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae).Pest. Sci. 35215.

    CAS  Google Scholar 

  • Konno, T., Hodgson, E., and Dauterman, W. C. (1989). Studies on methyl parathion resistance inHeliothis virescens.Pest. Biochem. Physiol. 33189.

    Article  CAS  Google Scholar 

  • Konno, T., Kasai, Y., Rose, R. L., Hodgson, E., and Dauterman, W. C. (1990). Purification and characterization of a phosphotriester hydrolase from methyl parathion-resistantHeliothis virescens.Pest. Biochem. Physiol. 361.

    Article  CAS  Google Scholar 

  • Lee, R. M., and Batham, P. (1966). The activity and organophosphate inhibition of cholinesterase from susceptible and resistant ticks (Acari).Entomol. Exp. Appl. 913.

    Article  CAS  Google Scholar 

  • Metcalf, R. L. (1989). Insect resistance to insecticides.Pest. Sci. 26333.

    CAS  Google Scholar 

  • Moores, G. D., Devonshire, A. L., and Denholm, I. (1988). A microtitre plate assay for characterizing insensitive acetylcholinesterase genotypes of insecticide-resistant insects.Bull. Entomol. Res. 78537.

    Article  Google Scholar 

  • Oppenoorth, F. J. (1985). Biochemistry and genetics of insecticide resistance. In Kerkut, G. A., and Gilbert, L. I. (eds.),Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12 Pergamon, Elmsford, NY, pp. 731–773.

    Google Scholar 

  • Payne, G. T. (1982).Mechanisms of Resistance to Methyl Parathion in the Tobacco Budworm, Heliothis virescens (Lepidoptera: Noctuidae) M. S. thesis, Clemson University, Clemson, SC.

    Google Scholar 

  • Payne, G. T. (1987).Inheritance and Mechanisms of Permethrin Resistance in the Tobacco Budworm. Heliothis virescens (Lepidoptera: Noctuidae) Ph.D. dissertation, Clemson University, Clemson, SC.

    Google Scholar 

  • Payne, G. T., and Brown, T. M. (1984). EPN andS,S,S -tributyl phosphorotrithioate as synergists of methyl parathion in resistant tobacco budworm larvae (Lepidoptera: Noctuidae).J. Econ. Entomol. 77294.

    CAS  Google Scholar 

  • Plapp, F. W., and Tripathi, R. K. (1978). Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the house fly.Biochem. Genet. 161.

    Article  PubMed  CAS  Google Scholar 

  • Pralavorio, M., and Fournier, D. (1992). Drosophila acetylcholinesterase: Characterization of different mutants resistant to insecticides.Biochem. Genet. 3077.

    Article  PubMed  CAS  Google Scholar 

  • Raffa, K. F., and Priester, T. M. (1985). Synergists as research tools and control agents in agriculture.J. Agr. Entomol. 227.

    CAS  Google Scholar 

  • Raymond, M., Pasteur, N., Fournier, D., Cuany, A., Bergé, J., and Magnin, M. (1985). Genetics of a propoxur insensitive acetylcholinesterase responsible for resistance inCulex pipiens L.C.R. Acad. Sci. Paris Ser. III 300509.

    CAS  Google Scholar 

  • Sawicki, R. M. (1970). Interaction between the factor delaying penetration of insecticides and the desethylation mechanism of resistance in organophosphorous-resistant houseflies.Pest. Sci. 184.

    CAS  Google Scholar 

  • Schulten, G. G. M. (1966). Genetics of resistance to parathion and demeton-S-methyl inTetranychus urticae Koch (Acarina).Genetica 37207.

    Article  Google Scholar 

  • Siegfried, B. D., and Ono, M. (1993). Mechanisms of parathion resistance in the greenbug,Schizaphis graminum (Rondani).Pest. Biochem. Physiol. 4524.

    Article  CAS  Google Scholar 

  • Smissaert, H. R. (1964). Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate.Science 143129.

    PubMed  CAS  Google Scholar 

  • Soderlund, D. M., Bloomquist, J. R., Wong, F., Payne, L. L., and Knipple, D. C. (1989). Molecular neurobiology: Implications for insecticide action and resistance.Pest. Sci. 26359.

    CAS  Google Scholar 

  • Takahashi, M., and Yasutomi, K. (1987). Insecticidal resistance ofCulex tritaeniorhynchus (Diptera: Culicidae) in Japan: Gentics and mechanisms of resistance to organophosphorus insecticides.J. Med. Entomol. 24595.

    PubMed  CAS  Google Scholar 

  • Van De Baan, H. E., Kuijpers, L. A. M., Overmeer, W. P. J., and Oppenoorth, F. J. (1985). Organophosphorus and carbamate resistance in the predacious miteTyphlodromus pyri due to insensitive acetylcholinesterase.Exp. Appl. Acarol. 13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, R.D., Bryson, P.K. & Brown, T.M. Linkage of acetylcholinesterase insensitivity to methyl parathion resistance inHeliothis virescens . Biochem Genet 34, 297–312 (1996). https://doi.org/10.1007/BF02399949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02399949

Key words

Navigation