Log in

Mechanism of the initial stage of bubble growth in a liquid close to the superheat limit

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. W. Doring, “Die Uberhitzungsgrense und Zerreibfestigkeit von Flüssigkeiten,” Z. Phys. Chem., Bd. 36, No. 516 (1937).

    Google Scholar 

  2. M. Volmer, Kinetik der Phasenbildung, Steinkopf Verl. Dresden-Leipzig (1939).

    Google Scholar 

  3. Ya. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  4. Ya. B. Zeldovich, Selected Works. Chemical Physics and Hydrodynamics [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  5. Yu. Kagan, “Kinetics of a pure liquid boiling,” Zh. Fiz. Khim.,34, No. 1 (1960).

    Google Scholar 

  6. V. P. Skripov, Metastable Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  7. P. A. Pavlov, Boiling Dynamics of Highly Superheated Liquids [in Russian], Uralskii Nauchnyi Tsentr AN SSSR, Sverdlovsk (1988).

    Google Scholar 

  8. E. I. Nesis, Boiling of Liquids [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  9. I. M. Lifshitz and Yu. Kagan, “Quantum kinetics of the phase transitions at temperatures close to absolute zero,” Zh. Eksp. Tekh. Fiz.,62, No. 1 (1972).

    Google Scholar 

  10. F. V. Bunkin and M. I. Tribelskii, “Nonresonant interaction of strong optical radiation with a liquid,” Uspehi Fiz. Nauk,130, No. 2 (1980).

    Google Scholar 

  11. E. R. Buckle, “A kinetic theory of cluster formation in the condensation of gases,” Trans. Faraday Soc.,65 (1968).

  12. Kuak and Li, “Calculation of bubble homogeneous nucleation using the model of molecular interaction,” Sovrem. Mashinostroenie, ser. A, No. 10 (1991).

  13. J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid. Mech.,121 (1982).

  14. B. P. Avksentyuk, V. V. Ovchinnikov, and V. Ya. Plotnikov, “Self-maintaining front of evaporation,” Izv. SO AN SSSR, Tekh. Nauk., No. 2 (1982).

  15. B. P. Avksentyuk and V. V. Ovchinnikov, “Evaporation dynamics in water”, Sib. Fiz. Tekh. Zh., No. 1 (1992).

  16. P. Giovanneschi, D. Dufresne, J. P. Caressa, and Ph. Bournot, “Measurement of high pressure induced in water by a CO2 laser pulse,” Appl. Phys. Lett.,36, No. 11 (1980).

  17. A. F. Vitnas, V. V. Grigoriev, V. V. Korneev, et al. “Pressure impulse excitement in water during the explosive evaporation of the subsurface layer”, Pisma Zh. Tekh. Fiz.,9, No. 23 (1983).

    Google Scholar 

  18. C. T. Avedisian, “Effect of pressure on bubble growth within liquid droplets at the superheat limit,” Trans. ASME J. Heat Transfer,104, No. 4 (1982).

    Google Scholar 

  19. D. Frost and B. Sturtevant, “Effect of ambient pressure on the instability of a liquid boiling explosively at the superheat limit,” Trans. ASME J. Heat Transfer,108, No. 2 (1986).

    Google Scholar 

Download references

Authors

Additional information

Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 36, No. 3, pp. 130–133, May–June, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avksentyuk, B.P. Mechanism of the initial stage of bubble growth in a liquid close to the superheat limit. J Appl Mech Tech Phys 36, 434–437 (1995). https://doi.org/10.1007/BF02369783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369783

Keywords

Navigation