Log in

Metabolism of hydroxybiphenyl and chloro-hydroxybiphenyl by biphenyl/chlorobiphenyl degradingPseudomonas testosteroni, strain B-356

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

A biphenyl (BP) and chlorobiphenyl (CBP) metabolizingPseudomonas testosteroni, strain B-356 was also capable of utilizing 2-, 3-, and 4-hydroxybiphenyl. Data presented here suggest that utilization of biphenyl and mono-subtituted biphenyls involves the enzymes of the same pathway. Chloro-hydroxybiphenyls were also metabolized by strain B-356. The unsubstituted ring is first hydroxylated in position 2 and 3 and then cleaved in ameta 1, and 2, position to ultimately generate the benzoic acid derivatives. Since strain B-356 was capable of utilizing benzoic acid and mono-hydroxybenzoic acids, the utilization of biphenyl, 2-, 3-, and 4-hydroxybiphenyl is complete at non-toxic concentrations of the substrates. Chlorobenzoic acids and chloro-hydroxybenzoic acids were not metabolized further by this strain. Studies usingPseudomonas putida, strain KT2440 carrying cloned BP/CBP genes from strain B-356 provided further evidence for the presence of a common pathway for the metabolism of the above compounds inP. testosteroni, strain B-356. Suggestions are made on significance of the broad substrate specificity of the enzymes of biphenyl/chlorobiphenyl pathway in regard to their possible origin and in relation to PCB mixture degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, D., R. Massé and M. Sylvestre. 1990. Cloning, physical map** and expression inPseudomonas putida of 4-chlorobiphenyl transformation genes fromPseudomonas testosteroni, strain B-356 and their homology to the genomic DNA from other PCB-degrading bacteria. Gene 86: 53–61.

    PubMed  Google Scholar 

  2. Bedard, D.L., R. Unterman., L.H. Bopp., M.J. Brennan., M.L. Hobert and C. Johnson. 1986. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768.

    PubMed  Google Scholar 

  3. Bumpus, J.A. 1989. Biodegradation of polycyclic aromatic hydrocarbons byPhanerochaete chrysosporium. Appl. Environ. Microbiol. 55: 154–158.

    PubMed  Google Scholar 

  4. Bumpus, J.A., M. Tien., D. Wright., S.D., Acest. 1985. Oxidation of persistent environmental pollutants by white rot fungus. Science 228: 1434–1436.

    PubMed  Google Scholar 

  5. Eaton, D.C. 1985. Mineralization of polychlorinated biphenyls byPhanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microbiol. Technol. 7: 194–196.

    Google Scholar 

  6. Furukawa, K. and A.M. Chakrabarty. 1982. Involvement of plasmids in total degradation of chlorinated biphenyls Appl. Environ. Microbiol. 44: 619–626.

    PubMed  Google Scholar 

  7. Furukawa, K., N. Hayase, K. Taira and N. Tomizuka 1989. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: Some soil bacteria possess a highly conserved bph operon. J. Bacteriol. 141: 5467–5472.

    Google Scholar 

  8. Furukawa, K. and T. Miyazaki. 1986. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation inPseudomonas pseudoalcaligenes. J. Bacteriol. 166: 392–398.

    PubMed  Google Scholar 

  9. Furukawa, K., J.R., Simon and A.M. Chakrabarty. 1983. Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism inPseudomonas paucimobilis. J. Bacteriol. 154: 1356–1362.

    PubMed  Google Scholar 

  10. Furukawa, K., N. Tomizuka and A. Kamibayashi. 1979. Effect of chlorine substitution of the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301–310.

    PubMed  Google Scholar 

  11. Gibson, D.T. and V. Subramanian, 1984. Microbial degradation of aromatic hydrocarbons. In: Microbial degradation of organic compounds (Gibson, D.T. ed., pp. 181–252, Marcel Dekker Inc. New York.

    Google Scholar 

  12. Higson, F.K. and D.D. Focht. 1989. Bacterial metabolism of hydroxylated biphenyls. Appl. Environ. Microbiol. 55: 946–952.

    PubMed  Google Scholar 

  13. Hiraga, K. and T. Fugii. 1981. Induction of tumours of the urinary system in F344 rats by dietary administration of sodium O-phenylphenate. Food Cosmet. Toxicol. 19: 303–310.

    PubMed  Google Scholar 

  14. Ishigooka, H., Y. Yoshida., T. Omori and Y. Minoda 1986. Enzymatic dioxygenation of biphenyl-2,3-diol and 3-isopropylcatechol. Agric. Biol. Chem. 50: 1045–1046.

    Google Scholar 

  15. Kohler, H.P.E., D. Kohler-Staub and D.D. Focht. 1988. Degradation of 2-hydroxybiphenyl and 2-2′-dihydroxybiphenyl byPseudomonas sp., strain HPB1. Appl. Environ. Microbiol. 54: 2683–2688.

    PubMed  Google Scholar 

  16. Makary, M.H. and W.A. Brindley 1983. Biphenyl hydroxylation and its induction differ between montane moles and Swiss Webster mice, Pestic. Biochem. Physiol. 19: 23–30.

    Google Scholar 

  17. Massé, R., F. Messier., C. Ayotte., F. Lévesque and M. Sylvestre. 1989. A comprehensive gas chromatographic mass spectrometric analysis of 4-chlorobiphenyl bacterial degradation products. Biomed. Environ. Mass Spectro. 18: 27–47.

    Google Scholar 

  18. Massé, R., F. Messier., L. Péloquin., C. Ayotte and M. Sylvestre. 1984. Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyls. Appl. Environ. Microbiol. 47: 947–951.

    PubMed  Google Scholar 

  19. Omori, T., H. Ishigooka and Y. Minoda. 1986. Purification and some properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) reducing enzyme fromPseudomonas cruciviae S93 B1 involved in the degradation of biphenyl. Agric. Biol. Chem 50: 1513–1518.

    Google Scholar 

  20. Omori, T., K. Sugimura., H. Ishigooka and Y. Minoda. 1986. Purification and some properties of a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolyzing enzyme fromPseudomonas cruciviae, S93 B1 involved in the degradation of biphenyl. Agric. Biol. Chem. 50: 931–937.

    Google Scholar 

  21. Parsons, J.R., D.T.H.M., Sijim., A. Van. Laar and O. Hutzinger. 1988. Biodegradation of chlorinated biphenyls and benzoic acids by aPseudomonas strain. Appl. Microbiol. Biotechnol. 29: 81–84.

    Google Scholar 

  22. Parsons, J.R., W. Veerkamp and O. Hutzinger. 1983. Microbial metabolism of chlorobiphenyls. Toxicol. Environ. Chem. 6: 327–350.

    Google Scholar 

  23. Prindle, R.F. 1983. Phenolic compounds. In: Disinfection, Sterilization and Preservation 3rd edn. (Block, S.S., ed.), pp. 197–224 Lea and Febiger Philadelphia.

    Google Scholar 

  24. Rosazza, J.P. and R.C. Smith. 1979. Microbial models for drug metabolism. Adv. Appl. Microbiol. 25: 19–69.

    Google Scholar 

  25. Schwartz R.D. 1981. A novel reaction: meta hydroxylation of biphenyl by an actinomycete. Enzyme Microbiol. Technol. 3: 158–159.

    Google Scholar 

  26. Shennan, J.L. 1983. Selection and evaluation of biocides for aqueous metal-working fluids. Tribol. Intl. 16: 317–330.

    Google Scholar 

  27. Smith R.V. and P.J. Davis. 1980. Induction of xenobiotic mono-oxygen-ases. Adv. Biochem. Eng. 14: 61–100.

    Google Scholar 

  28. Smith, R.V. and J.P. Rosazza. 1974. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161: 551–558.

    PubMed  Google Scholar 

  29. Suzuki, H., N. Suzuki., M. Sazaki and K. Hiraga. 1985. Orthophenylphenol mutagenicity in human cell strain. Mutagen. Res. 156: 123–127.

    Google Scholar 

  30. Sylvestre, M. and J. Fauteux. 1982. A new facultative anaerobe capable of growth on chlorobiphenyls. J. Gen. Appl. Microbiol. 28: 61–72.

    Google Scholar 

  31. Trotz, S.I. and J.J. Pitts. 1981. Industrial antimicrobial agents. In: Encyclopedia of Chemical Technology, 3rd edn., Vol. 13, pp. 223–253, Kirk-Othmer.

  32. Walia, S. R. Tewari., G. Brieger., V. Thimm and T. McGuire. 1988. Biochemical and genetic characterization of soil bacteria degrading polychlorinated biphenyl. In: Hazardous Waste: Detection, Control, Treatment (Abbow, R. ed.), pp. 1621–1632. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sondossi, M., Sylvestre, M., Ahmad, D. et al. Metabolism of hydroxybiphenyl and chloro-hydroxybiphenyl by biphenyl/chlorobiphenyl degradingPseudomonas testosteroni, strain B-356. Journal of Industrial Microbiology 7, 77–88 (1991). https://doi.org/10.1007/BF01576069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576069

Key words

Navigation