Log in

Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals

Part 1 In the absence of an applied stress field

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

End-point thermodynamic analyses were made of the tetragonal to monoclinic transformation (t→m) occurring in ZrO2 precipitates in a Ca-PSZ alloy and particles in Al2O3-ZrO2 composites. Calculated plots of the reciprocal critical size for transformation temperature were in excellent agreement with experimental data for both systems. Contributions to the total free energy change included bulk chemical, dilatational and residual shear strain energies and also interfacial energies. The latter term consisted of contributions from the change in the chemical surface free energy, the presence of twin boundaries in the precipitate (particle)-matrix interfacial energy. The major impediment to the transformation was the shear strain energy which could not be reduced sufficiently by twinning alone. The t → m reaction proceeded spontaneously when the energy barrier was reduced by the response of the particle-matrix interface. The response comprised loss of coherency and grain boundary microcracking for the Ca-PSZ and Al2O3-ZrO2 alloys, respectively. These results are in accord with recent suggestions that either a stress-free strain or a free surface is a necessary conditions for the initiation of a martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. J. Hannink, K. A. Johnston, R. T. Pascoe andR. C. Garvie,Adv. Ceram. 3 (1981) 116.

    Google Scholar 

  2. F. F. Lange,J. Mater. Sci. 17 (1982) 225.

    Google Scholar 

  3. A. G. Evans, N. Burlingame, M. Drory andW. M. Kriven,Acta. Metall. 29 (1981) 447.

    Google Scholar 

  4. N. Claussen andM. Rühle,Adv. Ceram. 3 (1981) 137.

    Google Scholar 

  5. A. H. Heuer, N. Claussen, W. M. Kriven andM. Rühle,J. Amer. Ceram. Soc. 65 (1982) 642.

    Google Scholar 

  6. G. B. Olson andM. Cohen,Ann. Rev. Mater. Sci. 11 (1981) 1.

    Google Scholar 

  7. R. C. Garvie,J. Phys. Chem. 82 (1978) 218.

    Google Scholar 

  8. R. C. Garvie, R. H. J. Hannink andC. Urbani,Ceram. Int. 6 (1980) 19.

    Google Scholar 

  9. D. M. Marsh,Proc. Roy. Soc. A279 (1964) 420.

    Google Scholar 

  10. H. Holmes, E. Fuller, Jr andR. Gammaye,J. Phys. Chem. 76 (1972) 1497.

    Google Scholar 

  11. R. H. J. Hannink,J. Mater. Sci. 13 (1978) 2487.

    Google Scholar 

  12. D. J. Green,J. Amer. Ceram. Soc. 65 (1982) 610.

    Google Scholar 

  13. N. Claussen, R. L. Cox andJ. S. Wallace,Comm. Amer. Ceram. Soc. 65 (1982) C-190.

    Google Scholar 

  14. W. J. Campbell andC. F. Grain,Adv. X-ray Anal. 5 (1962) 244.

    Google Scholar 

  15. S. M. Lang,J. Amer. Ceram. Soc. 47 (1964) 641.

    Google Scholar 

  16. M. V. Swain,J. Non-Cryst. Solids 38/39 (1980) 451.

    Google Scholar 

  17. R. W. Davidge, “Mechanical Behaviour of Ceramics” (Cambridge, London, 1979).

  18. W. D. Kingery,J. Amer. Ceram. Soc. 37 (1954) 42.

    Google Scholar 

  19. S. M. Wiederhorn, Proceedings of the Symposium on Mechanical and Thermal Properties of Ceramics, edited by J. B. Wachtman Jr, NBS Special Publication 303 (1969) 217.

  20. S. Prochazka, J. S. Wallace andN. Claussen,Comm. Amer. Ceram. Soc. 66 (1983) C-125.

    Google Scholar 

  21. “Engineering Properties of Selected Ceramic Materials”, edited by J. F. Lynch, C. G. Ruderer and W. H. Duckworth (American Ceramic Society, Colombus, Ohio, 1966).

    Google Scholar 

  22. J. T. Smith andC. L. Quackenbush,Bull. Amer. Ceram. Soc. 59 (1980) 529.

    Google Scholar 

  23. W. M. Kriven, Proceedings of the International Conference on Solid-Solid Phase Transformations, Pittsburgh, 1981.

  24. M. Rühle andW. M. Kriven,Ber. Bunsenge. Phys. Chem. 17 (1983) 222.

    Google Scholar 

  25. P. C. Clapp,Phys. Status Solidi (b) 57 (1975) 561.

    Google Scholar 

  26. D. J. Cheng andR. F. Wallis,Phys. Rev. B 12 (1975) 5599.

    Google Scholar 

  27. J. M. Galligan andT. Garosshen,Nature 274 (1978) 674.

    Google Scholar 

  28. T. J. Garosshen andJ. M. Galligan,Scripta Metall. 14 (1980) 1111.

    Google Scholar 

  29. K. E. Easterling andP. R. Swann,Acta. Metall. 19 (1971) 117.

    Google Scholar 

  30. S. Burke andR. C. Garvie,J. Mater. Sci. 12 (1977) 1487.

    Google Scholar 

  31. J. W. Spretnak,Met. Trans. A 7A (1976) 158.

    Google Scholar 

  32. H. Ruf andA. G. Evans,J. Amer. Ceram. Soc. 66 (1983) 328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvie, R.C., Swain, M.V. Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals. J Mater Sci 20, 1193–1200 (1985). https://doi.org/10.1007/BF01026313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026313

Keywords

Navigation