Log in

Neural networks for computing in the elastoplastic analysis of structures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A neural network model is proposed and studied for the treatment of elastoplastic analysis problems. These problems are formulated as Q.P.P.s with inequality subsidiary conditions. In order to treat these conditions the Hopfield model is appropriately generalized and a neural model is proposed covering the case of inequalities. Finally, the parameter identification problem is formulated as a supervised learning problem. Numerical applications close the presentation of the theory and the advantages of the neural network approach are illustrated.

Sommario

Si propone un modello di rete neurale con l'obiettivo di usarlo per la trattazione di problemi di analisi elastoplastica, formulati come problemi di programmazione quadratica con disequazioni sussidiarie. Allo scopo di trattare queste condizioni si generalizza il modello di Hopfield e si propone un modello neurale che copre il caso di disequazioni. Inoltre il problema di identificazione parametrica viene formulato come un problema di apprendimento guidato. La presentazione della teoria è seguita da esempi di applicazioni numeriche e dalla illustrazione dei vantaggi dell'uso delle reti neurali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maier, G., ‘A quadratic programming approach for certain classes of nonlinear structural problems’,Meccanica 3 (1968) 121–130.

    Google Scholar 

  2. Maier, G., ‘Quadratic programming and theory of elastic-perfectly plastic structures’,Meccanica 3 (1968) 265–273.

    Google Scholar 

  3. Maier, G., ‘Linear flow-laws of clastoplasticity, a unified general approach’,Rend. Acc. Naz. Lincei VIII (1969) 266–276.

    Google Scholar 

  4. Maier, G., ‘A matrix structural theory of piece-wise linear elastoplasticity with interacting yield planes’,Meccanica 8 (1970) 54–66.

    Google Scholar 

  5. Maier, G., ‘Incremental plastic analysis in the presence of large displacements and physical instabilizing effects’,Int. J. Solids Struct. 7 (1971) 345–372.

    Google Scholar 

  6. Maier, G., ‘Mathematical programming methods in structural analysis’, in: Brebbia, C.A. and Tottenham, H. (Eds.),Proc. Int. Conf. on Variational Methods in Engineering, Vol. II, Southampton University Press, Southampton, UK 1973, pp. 1–32.

    Google Scholar 

  7. Capurso, M. and Maier, G., ‘Incremental elastoplastic analysis and quadratic optimization’,Meccanica 5 (1970) 1–10.

    Google Scholar 

  8. Cohn, M.J. and Maier, G. (eds), ‘Engineering plasticity by mathematical programming’,Proc. NATO-ASI, Waterloo, Canada 1977, Pergamon Press, New York, 1979.

    Google Scholar 

  9. Donato, O. de and Maier, G., ‘Mathematical programming methods for the inelastic analysis of reinforced concrete frames allowing for limited rotation capacity’,Int. J. Num. Meth. in Eng. 4 (1972) 307–329.

    Google Scholar 

  10. McCulloch, W. and Pitts, W., ‘A logical calculus of the ideas immanent in nervous activity’,Bull. of Math. Biophysics 5 (1943) 115–133.

    Google Scholar 

  11. Widrow, B. and Hoff, M., ‘Adaptive switching circuits’,1960 IRE WESCON Convention Record, New York IRE, 96–104.

  12. Hopfield, J.J., ‘Neural networks and physical systems with emergent collective computational abilities’,Proc. of the Natn. Acad. Sci. U.S.A. 79 (1982) 2554–2558.

    Google Scholar 

  13. Hopfield, J.J. and Tank, D.W., ‘“Neural” computation of decisions in optimization problems’,Biol. Cybern. 52 (1985) 141–152.

    Google Scholar 

  14. Lippman, R., ‘An introduction to computing with neural nets’,IEEE ASSP Magazine, April 1987, pp. 4–22.

  15. Amari, S., ‘Dynamic stability of formation of cortical maps in dynamic interactions in neural networks. Models and data’, in: Arbib, M. and Amari, S. (Eds.),Res. Notes in Neural Comp., Vol. 1, Springer Verlag, Berlin, New York, 1989.

    Google Scholar 

  16. Anderson, J. and Rosenfeld, E.,Neurocomputing. Foundations of Research, The MIT Press, Cambridge MA, 1988.

    Google Scholar 

  17. Durbin, R., Miall, C. and Mitchison, G.,The Computing Neuron, Addison Wesley, New York, 1989.

    Google Scholar 

  18. Soucek, B.,Neural and Concurrent Real Time Systems, Wiley, New York, 1989.

    Google Scholar 

  19. Wacholder, E., ‘A neural network-based optimization algorithm for the static weapon-target assignment problem’,ORSA Journal of Computing 1 (1989) 165–187.

    Google Scholar 

  20. Van Den Bout, D.E. and Miller, T.K., ‘Graph partitioning using annealed neural networks’,IEEE Transactions on Neural Networks 1 (1990) 75–87.

    Google Scholar 

  21. Houstis, E.N., Kortesis, S.K. and Byun, H., ‘A workload partitioning strategy for PDES by a generalized neural network’,Computer Science Department, Purdue University, West Lafayette, IN. 47907,CSD-TR 934, 1990.

  22. Panagiotopoulos, P.D.,Inequality Problems in Mechanics and Applications, Convex and Nonconvex Energy Functions, Birkhäuser Verlag, Basel, Boston, 1985 (Russian Translation, MIR Publ., Moscow, 1989).

    Google Scholar 

  23. Avdelas, A.V., Application of the Quadratic Programming Methods in the Problems of the Theory of Plasticity, Doct. Dissertation, Dept. of Civil Engineering, Aristotle University, Thessaloniki 1987.

    Google Scholar 

  24. Panagiotopoulos, P.D., ‘Variational inequalities and multilevel optimization technique in the theory of plasticity’,Comp. & Struct. 8 (1978) 649–650.

    Google Scholar 

  25. Panagiotopoulos, P.D., Baniotopoulos, C.C. and Avdelas, A.V., ‘Certain proposition on the activation of yield modes in elastoplasticity and their applications to deterministic and stochastic problems’,ZAMM 64 (1984) 491–501.

    Google Scholar 

  26. Bisbos, C. and Mistakidis, E., ‘Application of the SVD to the equilibrium and compatibility equations of matrix structural analysis’, in:Conf. on the Occasion of the 70 Anniversary of Prof. G. Nitsiotas, Aristotle University, Proceedings Vol. Θ', Thessaloniki, 1991.

  27. Panagiotopoulos, P.D., Mistakidis, E. and Panagouli, O., ‘Fractal interfaces with unilateral contact and friction conditions’,Comp. Meth. in Appl. Mech. and Eng. 99 (1992) 395–412.

    Google Scholar 

  28. Fichera, G., ‘Boundary value problems in elasticity with unilateral constraints’, in: Flügge, S. (Ed.),Encyclopedia of Physics, Vol. VI a/2. Springer-Verlag, Berlin, 1972.

    Google Scholar 

  29. Keller, E.L., ‘The general quadratic optimization problem’,Mathematical Programming 5 (1973) 311–337.

    Google Scholar 

  30. Panagiotopoulos, P.D., ‘Multivalued boundary integral equations for inequality problems. The convex case’,Acta Mechanica 70 (1987) 145–167.

    Google Scholar 

  31. Adamopoulos, M., Neural Networks. Algorithms and Applications, Doct. Dissertation, Dept. of Comp. Sciences, Aristotle University, Thessaloniki 1991.

    Google Scholar 

  32. Antes, H. and Panagiotopoulos, P.D.,The Boundary Integral Approach to Static and Dynamic Contact Problems, Birkhäuser Verlag, Basel, Boston, Berlin, 1992.

    Google Scholar 

  33. Haug, E.G. and Cea, J. (Eds.),Optimization of Distributed Parameter Structures, Sijthoff and Noordhoff, Amsterdam, 1991.

    Google Scholar 

  34. Tarun Khana,Foundations of Neural Networks, Addison-Wesley, New York, 1990.

    Google Scholar 

  35. Beal, R. and Jackson, T.,Neural Computing. An Introduction, Adam Hilger, Bristol, UK, 1990.

    Google Scholar 

  36. Panagiotopoulos, P.D., ‘Optimal control and parameter identification of structures with convex and non-convex strain energy density. Applications to elastoplasticity and to contact problems’,S.M. Archives 8 (1983) 363–411.

    Google Scholar 

  37. Panagiotopoulos, P.D.,Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer Verlag, Berlin, Heidelberg, New York, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdelas, A.V., Panagiotopoulos, P.D. & Kortesis, S. Neural networks for computing in the elastoplastic analysis of structures. Meccanica 30, 1–15 (1995). https://doi.org/10.1007/BF00987122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987122

Key words

Navigation