Log in

Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The circadian locomotor activity rhythms of 7 species of lizards can readily be entrained (synchronized) toLD12: 12 (30–50 lux: 0) fluorescent light cycles after complete surgical removal of both eyes. Removal of the parietal eye and pineal organ does not prevent entrainment of blinded lizards. Appropriate control experiments established that lightper se, and not low amplitude temperature cycles or other obvious environmental variables, was the entraining stimulus for blinded lizards. In some cases, blocking the penetration of light to the brains of blinded lizards caused them to free-run (express their endogenous circadian rhythm) in the presence of a dim green light cycle, to which they had previously entrained, suggesting that the brain is the site of the extraretinal photoreceptor(s) mediating entrainment. The extraretinal photoreceptor(s) is capable of intensity discrimination since changing the intensity of aLD 12: 12 fluorescent light cycle caused a change in the phase-relationship between the entrained activity rhythm and the light cycle in a blinded gekko. The lateral eyes are also involved in mediating entrainment since removal of the lateral eyes of thoseSceloporus olivaceus which previously entrained to a dim green light cycle [LD 12: 12 (0.05 lux: 0)] caused them to free-run. Also, blinding had noticeable effects on the entrained activity patterns of some species of lizards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, K.: Extraoptic phase shifting of circadian locomotor rhythm in salamanders. Science164, 1290–1292 (1969).

    Google Scholar 

  • Adler, K.: Pineal end organ: Role in extraoptic entrainment of circadian locomotor rhythm in frogs. In: Biochronometry, ed. M. Menaker. Washington, D.C.: National Academy of Sciences 1971.

    Google Scholar 

  • Ariëns-Kappers, J.: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs in vertebrates. Progr. Brain Res.10, 87–153 (1965).

    Google Scholar 

  • Ariëns-Kappers, J.: The sensory innervation of the pineal organ in the lizard,Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z. Zellforsch.81, 581–618 (1967).

    Google Scholar 

  • Aschoff, J.: Response curves in circadian periodicity. In: Circadian clocks, ed. J. Aschoff. Amsterdam: North-Holland Pub. Co. 1965.

    Google Scholar 

  • Bagnara, J. T., Hadley, M. E.: Endocrinology of the amphibian pineal. Amer. Zoologist10, 201–216 (1970).

    Google Scholar 

  • Benoit, J.: The role of the eye and of the hypothalamus in the photostimulation of gonads in the duck. Ann. N.Y. Acad. Sci.117, 204–217 (1964).

    Google Scholar 

  • Binkley, S., Kluth, E., Menaker, M.: Pineal function in sparrows: Circadian rhythms and body temperature. Science174, 311–314 (1971).

    Google Scholar 

  • Binkley, S., Kluth, E., Menaker, M.: Pineal and locomotor activity. J. comp. Physiol.77, 163–169 (1972).

    Google Scholar 

  • Browman, L. G.: The effect of bilateral optic enucleation upon the activity rhythms of the albino rat. J. comp. Psychol.36, 33–46 (1943).

    Google Scholar 

  • Bruss, R. T., Jacobson, E., Halberg, F., Zander, H. A., Bittner, J. J.: Effects of lighting regimen and blinding upon gross motor activity of mice. Fed. Proc.17, 21 (1958).

    Google Scholar 

  • Camp, C. L.: Classification of the lizards. Bull. Amer. Mus. Nat. Hist.48, 289–481 (1923).

    Google Scholar 

  • Conant, R.: A field guide to reptiles and amphibians. Boston: Houghton Mifflin Co. 1958.

    Google Scholar 

  • Dodt, E., Scherer, E.: The electroretinogram of the third eye. In: Advances in electrophysiology and -pathology of the visual system. 6th ISCERG Symposium. Leipzig: VEB G. Thieme 1968.

    Google Scholar 

  • Eakin, R. M., Stebbins, R. C.: Parietal eye nerve in the fence lizard. Science130, 1573–1574 (1959).

    Google Scholar 

  • Eakin, R. M., Westfall, J. A.: Further observations on the fine structure of the parietal eye of lizards. J. biophys. biochem. Cytol.8, 483–499 (1960).

    Google Scholar 

  • Enright, J. T.: Synchronization and ranges of entrainment. In: Crcadian clocks (ed. J. Aschoff). Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Erikson, L. O.: Tagesperiodik geblendeter Bachsaiblinge. Naturwissenschaften59, 219–220 (1972).

    Google Scholar 

  • Gaston, S., Menaker, M.: Pineal function: The biological clock in the sparrow? Science160, 1125–1127 (1968).

    Google Scholar 

  • Gaston, S.: The influence of the pineal organ on the circadian activity rhythm in birds. In: Biochronometry (ed. M. Menaker). Washington, D.C.: National Academy of Sciences 1971.

    Google Scholar 

  • Glaser, R. Increase in locomotor activity following shielding of the parietal eye in night lizards. Science128, 1577–1578 (1958).

    Google Scholar 

  • Halberg, P., Visscher, M. B., Bittner, J. J.: Relation of visual factors to eosinophil rhythm in mice. Amer. J. Physiol.179, 229–235 (1954).

    Google Scholar 

  • Hamasaki, D. I.: Spectral sensitivity of the parietal eye of the green iguana. Vision Res.9, 515–523 (1969).

    Google Scholar 

  • Hamasaki, D. I., Dodt, E.: Light sensitivity of the lizard'sepiphysis cerebri. Pflügers Arch.313, 19–29 (1969).

    Google Scholar 

  • Heckrotte, C.: The effect of environmental factors on the locomotor activity of the plains garter snake. Anim. Behav.10, 193–207 (1962).

    Google Scholar 

  • Hoffmann, K.: Synchronisation der circadianen Aktivitätsperiodik von Eidechsen durch Temperaturcyclen verschiedener Amplitude. Z. vergl. Physiol.58, 225–228 (1968).

    Google Scholar 

  • Hoffmann, K.: Zur Synchronisation biologischer Rhythmen. Verh. d. Dtsch. Zool. Ges. 1970: 266–273.

  • Homma, K., Sakakibara, Y.: Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail. In: Biochronometry (ed. M. Menaker). Washington, D.C.: National Academy of Sciences 1971.

    Google Scholar 

  • Hunt, J. M., Schlosberg, H.: The influence of illumination upon general activity in normal, blinded, and castrated male white rats. J. comp. Psychol.28, 285–298 (1939).

    Google Scholar 

  • Kincl, F. A., Chang, C. C., Zbuzkova, V.: Observations on the influence of changing photoperiod on spontaneous wheel-running activity of neonatally pinealectomized rats. Endocrinology87, 38–42 (1970).

    Google Scholar 

  • Kleinholz, L. H.: Studies in reptilian colour changes II. The pituitary and adrenal glands in the regulation of the melanophores ofAnolis carolinensis. J. exp. Biol.15, 474–491 (1938).

    Google Scholar 

  • LaPointe, J. L.: Investigations of the function of the parietal eye in relation to locomotor activity cycles in the lizard,Xantusia vigilis. Ph. D. Thesis, Univ. of Calif., Berkeley 1966.

    Google Scholar 

  • Lauber, J. K., Body, J. E., Axelrod, J.: Enzymatic synthesis of melatonin in avian pineal body: Extraretinal response to light. Science161, 489–490 (1968).

    Google Scholar 

  • Machado, C. R. S., Machado, A. B. M., Wragg, L. E.: Circadian serotonin rhythm control: Sympathetic and nonsympathetic pathways in rat pineals of different ages. Endocrinology85, 846–848 (1969b).

    Google Scholar 

  • Machado, C. R. S., Wragg, L. E., Machado, A. B. M.: Circadian rhythm of serotonin in the pineal body of immunosympathectomized immature rats. Science164, 442–443 (1969a).

    Google Scholar 

  • McMillan, J. P.: Pinealectomy abolishes the circadian rhythm of migratory restlessness. J. comp. Physiol.79, 105–112 (1972).

    Google Scholar 

  • Menaker, M.: Extraretinal light perception in the sparrow, I. Entrainment of the biological clock. Proc. nat. Acad. Sci. (Wash.)59, 414–421 (1968a).

    Google Scholar 

  • Menaker, M.: Light perception by extraretinal receptors in the brain of the sparrow. Proc. Amer. Psychol. Ass. 76th, 299–300 (1968b).

  • Menaker, M., Roberts, R., Elliott, J., Underwood, H.: Extraretmal light perception in the sparrow, III: The eyes do not participate in photoperiodic photoreception. Proc. nat. Acad. Sci. (Wash.)67, 320–325 (1970).

    Google Scholar 

  • Oksche, A., Kirschstein, H.: Unterschiedlicher elektronenmikroskopischer Feinbau der Sinneszellen im Parietalauge und im Pinealorgan (Epiphysis cerebri) von Lacertilia. Z. Zellforsch.87, 159–192 (1968).

    Google Scholar 

  • Parker, G. H.: Animal colour changes and their neurohumours. Cambridge, England: Cambridge Univ. Press 1948.

    Google Scholar 

  • Pearse, A. S.: The reactions of amphibians to light. Proc. Amer. Acad. Arts Sci.45, 161–208 (1910).

    Google Scholar 

  • Pittendrigh, C. S.: Circadian rhythms and the circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol.25, 159–184 (1960).

    Google Scholar 

  • Pittendrigh, C. S.: On the mechanism of the entrainment of a circadian rhythm by light cycles. In: Circadian clocks (ed. J. Aschoff). Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Quay, W. B.: Individuation and lack of pineal effect in the rat's circadian locomotor rhythm. Physiol. Behav.3, 109–118 (1968).

    Google Scholar 

  • Quay, W. B.: Physiological significance of the pineal during adaptation to shifts in photoperiod. Physiol. Behav.5, 353–360 (1970a).

    Google Scholar 

  • Quay, W. B.: Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol. Behav.5, 1281–1290 (1970b).

    Google Scholar 

  • Quay, W. B.: Dissimilar functional effects of pineal stalk and cerebral meningeal interruptions on phase shifts of circadian activity rhythms. Physiol. Behav.7, 557–567 (1971).

    Google Scholar 

  • Quay, W. B.: Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Trans. N.Y. Acad. Sci.34, 239–254 (1972).

    Google Scholar 

  • Reed, B. L.: The control of circadian pigment changes in the pencil fish: A proposed role for melatonin. Life Sci.7, 961–973 (1968).

    Google Scholar 

  • Richter, C. P.: Biological clocks in medicine and psychiatry. Springfield, III.: C. C. Thomas 1965.

    Google Scholar 

  • Richter, C. P.: Inherent twenty-four hour and lunar clocks of a primate—the squirrel monkey. Communications in Behavioral Biology1, 305–332 (1968).

    Google Scholar 

  • Scharrer, E.: Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische I). Z. vergl. Physiol.7, 1–38 (1928).

    Google Scholar 

  • Snyder, S. H., Zweig, M., Axelrod, J., Fischer, J. E.: Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. nat. Acad. Sci. (Wash.)53, 301–305 (1965).

    Google Scholar 

  • Stebbins, R. C., Eakin, R. M.: The role of the “third eye” in reptilian behavior. Amer. Mus. Novitates1870, 1–40 (1958).

    Google Scholar 

  • Stebbins, R. C.: Effects of pinealectomy in the western fence lizardSceloporus occidentalis. Copeia1960, 276–283 (1960).

    Google Scholar 

  • Stebbins, R. C.: Activity changes in the striped plateau lizard with evidence on influence of the parietal eye. Copeia1963, 681–691 (1963).

    Google Scholar 

  • Stebbins, R. C.: A field guide to western reptiles and amphibians. Boston: Houghton Mifflin Co. 1966.

    Google Scholar 

  • Stebbins, R. C., Wilhoft, D. C.: Influence of the parietal eye on activity in lizards. In: The Galápagos: Proceedings of the symposia of the Galápagos international scientific project (ed. R. I. Bowman). Univ. of Calif. Press 1966.

  • Stebbins, R. C.: The effect of parietalectomy on testicular activity and exposure to light in the desert night lizard (Xantusia vigilis). Copeia1970, 261–270 (1970).

    Google Scholar 

  • Steyn, W.: Electron microscopic observations on the epiphysial sensory cells in lizards and the pineal sensory cell problem. Z. Zellforsch.51, 735–747 (1960).

    Google Scholar 

  • Taylor, D. H., Ferguson, D. E.: Extraoptic celestial orientation in the southern cricket frogAcris gryllus. Science168, 390–392 (1970).

    Google Scholar 

  • Underwood, H.: Extraretinal light perception in lizards: Entrainment of the biological clock controlling locomotor activity. Ph. D. Thesis. Univ. of Texas, Austin 1972.

    Google Scholar 

  • Underwood, H., Menaker, M.: Extraretinal light perception: Entrainment of the biological clock controlling lizard locomotor activity. Science170, 190–193 (1970).

    Google Scholar 

  • Wetterberg, L., Geller, E., Yuwiler, A.: Harderian gland: An extraretinal photoreceptor influencing the pineal gland in neonatal rats? Science167, 884–885 (1970a).

    Google Scholar 

  • Wetterberg, L., Yuwiler, A., Ulrich, R., Geller, E., Wallace, R.: Harderian gland: Influence on pineal hydroxyindole-o-methyltransferase activity in neonatal rats. Science170, 194–196 (1970b).

    Google Scholar 

  • Wever, R.: A mathematical model for circadian rhythms. In: Circadian clocks (ed. J. Aschoff). Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Kelly, D. E.: The pineal. New York: Academic Press 1968.

    Google Scholar 

  • Zweig, M., Snyder, S. H., Axelrod, J.: Evidence for a nonretinal pathway of light to the pineal gland of newborn rats. Proc. nat. Acad. Sci. (Wash.)56, 515–520 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I thank Michael Menaker, Jeffrey Elliott, Sue Binkley, Joseph Silver, Ed Kluth, George Wyche, Bruee Rouse, Nancy Leshikar, Lili Mostafavi, Janet Alvis, Celeste Cromack, A. L. Mackey and Jean Rogers for their suggestions and technical assistance. Support for this work was provided by NIH grant HD-03803-02 (to M. Menaker); NSP grant GB-8138 (to M. Menaker); NSF traineeship GZ-1336 (to H. Underwood); and MH traineeship 5T01GM00836-09 (to H. Underwood).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, H. Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards. J. Comp. Physiol. 83, 187–222 (1973). https://doi.org/10.1007/BF00696895

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696895

Keywords

Navigation