Log in

Modelling and inversion -progress, problems, and challenges

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Researchers in the field of electromagnetic modelling and inversion have taken advantage of the impressive improvements of new computer hardware to explore exciting new initiatives and solid extensions of older ideas. Finite-difference time-step** methods have been successfully applied to full-domain 3D models. Another new method combines time-step** with spatial frequency solutions. The 2D model 3D source (2.5D) problem is also receiving fresh attention both for continental and sea floor applications.

The 3D inversion problem is being attacked by several researchers using distorted Born approximation methods. Q-domain inversions using transformation to pseudo-wave field and travel time tomography have also been successfully tested for low contrast problems. Subspace methods have been successful in dramatically reducing the computational burden of the under-determined style of inversion. Static magnetic field interpretation methods are proving useful for delineating the position of closely-spaced multiple targets.

Novel (“appeals to nature”) methods are also being investigated. Neural net algorithms have been tested for determining the depth and offset of buried pipes from EM ellipticity data. Genetic algorithms and simulated annealing have been tested for extremal model construction.

The failure of researchers to take adequate account of the properties of the mathematical transformation from algorithms to the number domain represented by the computing process remains a major stumbling block. Structured programming, functional languages, and other software tools and methods are presented as an essential part of the serial process leading from EM theory to geological interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, D., Dix, M., Francis, R., Mathieson, I. and Whiting, P.: 1991, ‘A Retargettable Programming Environment for Studying Climate Models’,Computational Techniques and Applications (CTAC-91), Adelaide.

  • Anderson, W.: 1979, ‘Numerical Integration of Related Hankel Transforms of Orders 0 and 1 by Adaptive Digital Filtering’,Geophysics 44, 1287–1305.

    Google Scholar 

  • Barnett, C. J.: 1984, ‘Simple Inversion of Time-Domain Electromagnetic Data’,Geophysics 49, 925–933.

    Google Scholar 

  • Broomhead, D. S. and Lowe, D.: 1988, ‘Multivariable Functional Interpolations and Adaptive Networks’,Complex Systems 2, 321–355.

    Google Scholar 

  • Cann, D.: 1992,Retire Fortran? A Debate Rekindled.

  • Dahl, O. E., Dijkstra, E., and Hoare, C.: 1972,Structured Programming, Academic Press.

  • Dijkstra, E.: 1972, ‘Structured Programming’, in: J. Buxtonet al. (eds.),Software Engineering, Concepts and Techniques, Van Nostrand Reinhold.

  • Dosso, S. E. and Oldenburg, D. W.: 1991, ‘Magnetotelluric Appraisal Using Simulated Annealing’,Geophys. J. Int. 106, 379–385.

    Google Scholar 

  • Dosso, S. E. and Oldenburg, D. W.: 1989, ‘Linear and Non-linear Appraisal Using Extremal Models of Bounded Variation’,Geophys. J. Int. 99, 483–495.

    Google Scholar 

  • Druskin, V. L. and Knizhnerman, L. A.: 1988, ‘A Spectral Semi-discrete Method for the Numerical Solution of 3D Nonstationary Problems in Electrical Prospecting’,Physics of the Solid Earth 24, 63–74.

    Google Scholar 

  • Duda, R. O. and Hart, P. E.: 1973,Pattern Classification and Scene Analysis, John Wiley and Sons.

  • Eaton, P. A. and Hohmann, G. W.: 1989, ‘A Rapid Inversion Technique for Transient Electromagnetic Soundings’,Physics of the Earth and Planetary Interiors 53, 394–404.

    Google Scholar 

  • Engquist, B. and Majda, A.: 1977, ‘Absorbing Boundary Conditions for the Numerical Simulation of Waves’,Math. Comp. 31, 629–651.

    Google Scholar 

  • Everett, M. E. and Edwards, R. N.: 1992, ‘Transient Marine Electromagnetics: The 2.D Forward Source Problem’, To appear inGeophys. J. Int.

  • Filatov, V. V.: 1984, ‘Construction of Focusing Transformations of Transient Electromagnetic Fields’,Geol. i Geofiz (Soviet Geology and Geophysics) 25, 89–95.

    Google Scholar 

  • Isaev, G. A. and Filatov, V.V.: 1981, ‘Physicomathematical Principles of Visualisation of Transient Electromagnetic Fields’,Geol. i Geofiz (Soviet Geology and Geophysics) 22, 89–95.

    Google Scholar 

  • Flosadóttir, A. H.: 1990,The Response of the Oceanic Lithosphere to Electromagnetic Controled Source Transmitter Using Local Spectral Representation, PhD Thesis Univ. of California, Scripps Institution of Oceanography, SIO Ref No. 90-23.

  • Franklin, J.: ‘Well-Posed Stochastic Extensions of Ill-Posed Linear Problems’,J. Math. Anal. Appl. 31, 682–716.

  • Fullagar, P. K. and Oldenburg, D. W.: 1984, Inversion of Horizontal Loop Frequency Soundings',Geophysics 49, 150–164.

    Google Scholar 

  • Goldberg, D. E.: 1989,Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley

  • Golub, G. H. and Van Loan, C. F.: 1989,Matrix Computations, second edition, The Johns Hopkins University Press.

  • Gupta, P. K., Bennett, L. A., and Raiche, A. P.: 1987, ‘Hybrid Calculations of the Three-Dimensional Electromagnetic Response of Buried Conductors’,Geophysics 52, 301–306.

    Google Scholar 

  • Hardy, R. L.: 1990, ‘Theory and Applications of the Multiquadratic-Biharmonic Method’,Computers Math. Applic. 19, 163–208.

    Google Scholar 

  • Hohmann, G. W.: ‘Three-Dimensional Induced Polarization and Electromagnetic Modeling’,Geophysics 40, 309-324.

  • Hohmann, G. W.: 1987, ‘Numerical Modelling for Electromagnetic Methods of Geophysics’, in M. N. Nabighian (ed.),Electromagnetic Methods in Applied Geophysics 3, vol. 1,Soc. Expl. Geophys. 313–364.

  • Hohmann, G. W. and Raiche, A. P.: 1987, ‘Inversion of Controlled Source Electromagnetic Data’, in: M. N. Nabighian (ed.),Electromagnetic Methods in Applied Geophysics 3, vol. 1,Soc. Expl. Geophys. 469–505.

  • Hordt, A., Dhuskin, V. L., Knizhnerman, L. A., and Strack, K. M.: 1992, ‘Interpretation of 3-D Effects in Long-offset Transient Electromagnetic (LOTEM) Soundings in the Münsterland Area/Germany’, submitted to Geophysics.

  • Hughes, J.: 1989, ‘Why Functional Programming Matters’,The Computer Journal 32, 98–107.

    Google Scholar 

  • Irons, B. M.: 1970, ‘A Frontal Solution Program for Finite Element Analysis’,International Journal for Numerical Analysis in Engineering 2, 5–32.

    Google Scholar 

  • Johansen, H. K. and Sorensen, K.: 1979, ‘Fast Hankel Transforms’,Geophysical Prospecting 27, 876–901.

    Google Scholar 

  • Jupp, D. L. B. and Vozoff, K.: 1975, ‘Stable Iterative Methods for the Inversion of Geophysical Data’,Geophys. J. R. Astr. Soc. 42, 957–976.

    Google Scholar 

  • Kansa, E. J.: 1990, ‘Multiquadrics - A Scattered Data Approximation Scheme with Applications to Computational Fluid Dynamics’,Computers Math. Applic. 19, 127–145.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C., and Vecchi, M. P.: 1983, ‘Optimisation by Simulated Annealing: Science’,220, 671–680

    Google Scholar 

  • Knight J. H. and Raiche, A. P.: 1982, ‘Transient Electromagnetic Calculations Using the Gaver-Stehfest inverse Laolace Transform Method’,Geophysics 47, 47–50.

    Google Scholar 

  • Lanczos, C.: 1961,Linear Differential Operators, Chapter 3, D. Van Nostrand Co.

  • Lee, K. H. and Morrison, H. F.: 1985, ‘A Numerical Solution for the Electromagnetic Scattering by a Two-Dimensional Inhomogeneity’,Geophysics 50, 466–472.

    Google Scholar 

  • Lee, K. H. and Morrison, H. F.: 1989, ‘A New Approach to Modeling the Electromagnetic Response of Conductive Media’,Geophysics 54, 1180–1192.

    Google Scholar 

  • Lee, K. H. and **e, G. Q.: 1992, ‘A New Approach to Imaging with Low Frequency Electromagnetic Fields’,Geophysics 58, 780–796.

    Google Scholar 

  • Lee, S.: 1991, ‘Modelling of 3-D Electromagnetic Responses Using the Time-Wavenumber Method’, PhD Thesis, University of California, Berkeley.

    Google Scholar 

  • Linger, Mills and Witt, 1979, Structured Programming - Theory and Practice, Addison-Wesley.

  • Liu, J., Kelly, P. H. J., Cox, S. M., and Taylor, F. S.: 1992, ‘Functional Programming for Scientific Computation’, submitted toEngineering Computation.

  • Macnae, J. C., Smith, R., Polzer, B. D., Lamontagne, Y., and Klinkert, P.: 1991, ‘Conductivity-Depth Imaging of Airborne Electromagnetic Step-Response Data’,Geophysics 56, 102–114.

    Google Scholar 

  • Madden T. R. and Mackie, R. L.: 1989, ‘Three-Dimensional Modeling and Inversion’,Proc. IEEE 77, 318–333.

    Google Scholar 

  • Mteropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.: 1953, ‘Equation of State Calculations by Fast Computing Machines’,J. Chemical Physics 21, 1087–1092.

    Google Scholar 

  • Newman, G. A. and Hohmann, G. W.: 1986, ‘Transient Electromagnetic Response of High-Contrast Prisms in a Layered Earth’,Geophysics 53, 691–706.

    Google Scholar 

  • Oldenburg, D. W. and Ellis, R. G.: 1991, ‘Inversion of Geophysical Data Using an Approximate Inverse Map**’,Geophys. J. Int. 105, 325–353.

    Google Scholar 

  • Oldenburg, D. W., McGillivray, P. R., and Ellis, R. G.: 1992, ‘Generalised Subspace Methods for Large Scale Inversion’, submitted toGeophys. J. Int.

  • Oristaglio, M. L. and Hohmann, G.W.: 1984, ‘Diffusion of Electromagnetic Fields into a Two-Dimensional Earth; A Finite Difference Approach’,Geophysics 46, 870–894.

    Google Scholar 

  • Pellerin, L.: 1992,Application of 3-D Modeling in EM Exploration, PhD thesis, University Of Utah, Salt Lake City.

    Google Scholar 

  • Pelton, W. H., Rijo, L., and Swift Jr., C. M.: 1978, ‘Inversion of Two-Dimensional Resistivity and Induced Polarization Data’.Geophysics 43, 788–803.

    Google Scholar 

  • Poggio, T. and Girosi, F.: 1990, ‘Regularisation Algorithms for Learning that are Equivalent to Multilayer Networks’.Science 247, 978–982.

    Google Scholar 

  • Poulton, M. W., Sternberg, B. K., and Glass, C. E.: 1992, ‘Location of Subsurface Targets in Geophysical Data Using Neural Networks’,Geophysics 57, 1534–1544.

    Google Scholar 

  • Poulton, M. W., Sternberg, B. K., and Glass, C. E.: 1992a, ‘Neural Network Pattern Recognition of Subsurface Images’,Journal of Applied Geophysics 29, 21–36.

    Google Scholar 

  • Powell, M. J. D.: 1987, Radial Basis Function Approximations to Polynomials, DAMPT preprint (presented at the 1987 Dundee Numerical Analysis Conference).

  • Powell, M. J. D.: 1985, Radial Basis Functions for Multivariable Interpolation: a Review, IMA Conference on “Algorithms for the Approximation of Functions and Data”, RMCS Shrivenham.

  • Raiche, A. P.: 1987, ‘Transient Electromagnetic Field Computations for Polygonal Loops on Layered Earths’,Geophysics 52, 785–793.

    Google Scholar 

  • Raiche, A. P.: 1991, ‘A Pattern Recognition Approach to Geophysical Inversion Using Neural Nets’,Geophys J. Int. 105, 629–648.

    Google Scholar 

  • Raiche, A. P. and Tarlowski, Z. K.: 1984, ‘A Hybrid Method for Solving the Boundary Value Problems for Helmholtz's Equation in Two-Dimensional Domains’,Computational Techniques & Applications (CTAC-83), J. Noye & C. Fletcher, Editors, Elsevier (North Holland).

    Google Scholar 

  • Sen, M. K. and Stoffa, P. L.: 1992, ‘Genetic Inversion of AVO’,The Leading Edge, 27–29.

  • Silic, J.: 1989, ‘Interpretation of TDEM Data Using First and Second Spatial Derivatives and Time Decay Analysis’,Exp. Geophys. 20, 57–64.

    Google Scholar 

  • Smith, J. T. and Booker, J. R.: 1991, ‘Rapid Inversion of Two- and Three-Dimensional Magnetotelluric Data’,J. Geophys. Res. 96, 3905–3922.

    Google Scholar 

  • Sugeng, F. and Raiche, A. P.: 1989, ‘Predicting the Transient EM Response of Complex Structures Using the Compact Finite-Element Method’,Exp. Geophys. 20, 51–56.

    Google Scholar 

  • Sugeng, F. and Raiche, A. P.: 1992, ‘Comparing 3-D Controlled Source Time-Domain Response of 2-D and Elongated 3-D Conductors in Layered Conducting Hosts’, IAGA 11th Workshop on EM Induction in the Earth, Wellington, NZ.

  • Tarlowski, C. Z. and Raiche, A. P.: 1984, ‘The Use of Summary Representation for Electromagnetic Modeling’,Geophysics 49, 1506–1516.

    Google Scholar 

  • Travis, B. J. and Chave, A. D.: 1989, ‘A Moving Finite Element Method for Magnetotelluric Modelling’,PEPI 53, 432–443.

    Google Scholar 

  • Unsworth, M. J., Travis, B. J., and Chave, A. D.: 1993, ‘Electromagnetic Induction by a Finite Dipole over a 2-D Earth’,Geophysics 58, 198–214.

    Google Scholar 

  • Wang, T. and Hohmann, G. W.: 1993, ‘A Finite-Difference Time-Domain Solution for Three-Dimensional Electromagnetic Modelling’,Geophysics 58, 780–796.

    Google Scholar 

  • Wolfram, S.: 1991,Mathematica, A System for Doing Mathematics by Computer, Addison-Wesley.

  • Yee, K. S.: 1966, ‘Numerical Solution of Initial Boundary Problems Involving Maxwell's Equations in Isotropic Media’,IEEE Trans. Ant. Prop. AP-14, 302–309.

    Google Scholar 

  • Zhdanov, M. S. and Frenkel, M. A.: 1983, ‘The Solution of the Inverse Problems on the Basis of the Analytical Continuation of the Transient Electromagnetic Field in Reverse Time’,J. Geomag. Geoelectr. 35, 747–765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiche, A. Modelling and inversion -progress, problems, and challenges. Surv Geophys 15, 159–207 (1994). https://doi.org/10.1007/BF00689859

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689859

Keywords

Navigation