Log in

Analysis of isothermal and isochronal annealing in deformed Zn and Zn-Ag

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zn and Zn-Ag polycrystals have been deformed by rolling at 293 K to true strains ε=0.05–3.8. After deformation, samples were subjected to isothermal and isochronal anneals, and thereby investigated by intermittent measurements of strength, electrical resistivity, and TEM. Along the isotherms at 293 K, quite unusual hardening effects were observed, which turned out to be strongly affected by the applied prestrain and alloy content. The experimental results can be consistently ascribed to loop formation and loop coarsening from deformation-induced vacancies whereas other explanations, such as loop formation by oxidation and/or phase transformations, can be largely ruled out. Saada's model accounts satisfactorily for the vacancy concentrations measured. In the framework of a loop-hardening theory by Kirchner, the experimentally found values of vacancy concentration and loop density/size yield the right order of magnitude for the strength effects observed. With the isochronal anneals, three stages could be found which are related to loop annealing, dislocation rearrangement, and dislocation annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Seeger and H. Träuble, Z. Metallkde 51 (1960) 435.

    CAS  Google Scholar 

  2. A. Seeger, H. Kronmüller, S. Mader and H. Träuble, Phil. Mag. 6 (1961) 639.

    Article  CAS  Google Scholar 

  3. K. H. Adams, T. Vreeland Jr and D. S. Wood, Mater. Sci. Engng 2 (1967) 37.

    Article  CAS  Google Scholar 

  4. F. F. Lavrentev, O. P. Salita, P. D. Shutyayev, Phys. Met. Metall. 41 (1976) 412.

    CAS  Google Scholar 

  5. F. F. Lavrentev and V. L. Vladimirova, Mater. Sci. Engng 30 (1977) 141.

    Article  CAS  Google Scholar 

  6. F. F. Lavrentev, O. P. Salita and P. D. Shutyayev, Phys. Met. Metall 43 (1977) 1300.

    CAS  Google Scholar 

  7. M. Bocek, Phys. Status Solidi 3 (1963) 2169.

    Article  CAS  Google Scholar 

  8. B. Wielke, Phys. Status Solidi (a) 33 (1976) 241.

    Article  CAS  Google Scholar 

  9. B. Mikulowski, B. Wielke and H. O. K. Kirchner, Acta Metall. 30 (1982) 633.

    Article  CAS  Google Scholar 

  10. B. Wielke, A. Chalupka and G. Schöck, in “Proceedings ICSMA 5”, Aachen, edited by P. Haasen et al. (Pergamon Press, Oxford, 1979) p. 65.

    Google Scholar 

  11. H. O. K. Kirchner, Z. Metallkde 67 (1976) 525.

    CAS  Google Scholar 

  12. J. Spyridelis, Mater. Res. Bull. 6 (1971) 1345.

    Article  CAS  Google Scholar 

  13. S. J. Burns and B. Rössler, Phys. Status Solidi (a) 13 (1972) K91.

    Article  CAS  Google Scholar 

  14. D. Michell and G. J. Ogilvie, Phys. Status Solidi 15 (1968) 83.

    Article  Google Scholar 

  15. C. G'sell, PhD thesis, Inst. Nat. Polytechn. de Lorraine, Nancy, France (1977).

    Google Scholar 

  16. R. E. Smallman and K. H. Westmacott, Mater. Sci. Engng 9 (1972) 249.

    Article  CAS  Google Scholar 

  17. M. Zehetbauer and D. Trattner, ibid. 89 (1987) 93.

    Article  CAS  Google Scholar 

  18. B. Mikulowski and B. Wielke, Czech. J. Phys. B 35 (1985) 286.

    Article  Google Scholar 

  19. Idem, ibid. 38 (1988) 453.

    Article  Google Scholar 

  20. A. Berghezan, A. Fourdeux and S. Amelinckx, Acta Metall. 9 (1961) 464.

    Article  CAS  Google Scholar 

  21. H. Müller, Thesis, Technische Universität Braunschweig, FRG (1983).

    Google Scholar 

  22. W. Pfeiffer, Phys. Status Solidi 2 (1962) 1727.

    Article  CAS  Google Scholar 

  23. R. W. Cahn, in “Physical Metallurgy”, edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1983) Ch. 25, p. 1595.

    Google Scholar 

  24. J. Nihoul, Phys. Status Solidi 3 (1963) 2061.

    Article  CAS  Google Scholar 

  25. P. Ehrhardt and B. Schönfeld, Phys. Rev. B 19 (1979) 3896.

    Article  Google Scholar 

  26. Idem, ibid. 19 (1979) 3905.

    Article  Google Scholar 

  27. C. Hidalgo, S. Linderoth and N. de Diego, Phil. Mag. A54 (1986) L 61.

    Article  Google Scholar 

  28. C. Hidalgo, N. de Diego and P. Moser, J. Appl. Phys. A40 (1986) 25.

    Article  CAS  Google Scholar 

  29. M. Zehetbauer, J. Schmidt and F. Haessner, Scripta Metall. 25 (1991) 559.

    Article  CAS  Google Scholar 

  30. H. J. Wollenberger, in “Physical Metallurgy”, edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1983) Ch. 17, p. 1139.

    Google Scholar 

  31. J. Schmidt, unpublished results, Technische Universität Braunschweig, FRG (1989).

  32. H. Kimura and R. Maddin, in “Quench Hardening in Metals” (North Holland, 1971) p. 30.

  33. D. M. Fegredo, J. Inst. Metals 93 (1964/65) 268.

    Google Scholar 

  34. M. Zehetbauer, J. Phys. Cond. Matt. 1 (1989) 2833.

    Article  Google Scholar 

  35. S. Ceresara, H. Elkholy and T. Federighi, Phil. Mag. 12 (1965) 1105.

    Article  CAS  Google Scholar 

  36. F. Haessner and J. Schmidt, Scripta Metall. 22 (1988) 1917.

    Article  CAS  Google Scholar 

  37. M. Deighton and R. N. Parkins, Trans. Met. Soc. AIME 245 (1969) 1917.

    CAS  Google Scholar 

  38. A. Couret and D. Caillard, Acta Metall. 33 (1985) 1447.

    Article  CAS  Google Scholar 

  39. Idem, ibid. 33 (1985) 1455.

    Article  CAS  Google Scholar 

  40. G. Schöck and W. Püschl, in “Proceedings of the 8th International Conference on Strength of Metals and Alloys”, (ICSMA 8), Tampere, Finland, edited by P. O. Kettunen, T. K. Lepistö and M. E. Lehtonen (Pergamon Press, Oxford, 1988) p. 239.

    Google Scholar 

  41. H. G. van Bueren, Acta Metall. 3 (1955) 519.

    Article  Google Scholar 

  42. Idem, in “Imperfections in Crystals” (North Holland, 1960) p. 153.

  43. G. Saada, Acta Metall. 9 (1961) 166.

    Article  Google Scholar 

  44. Idem, ibid. 9 (1961) 965.

    Article  Google Scholar 

  45. P. B. Hirsch, in “Internal Stresses and Fatigue in Metals”, edited by G. M. Rasweiler and W. L. Grube (Elsevier, 1959) p. 139.

  46. A. v. d. Beukel, in “Vacancies and Interstitials of Metals”, edited by A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North Holland, Amsterdam, 1969) p. 427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marczewska-Lasa, B., Zehetbauer, M., Pfeiler, W. et al. Analysis of isothermal and isochronal annealing in deformed Zn and Zn-Ag. J Mater Sci 26, 4499–4510 (1991). https://doi.org/10.1007/BF00543673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543673

Keywords

Navigation