Log in

Physiologische Grundlagen einer Hörprothese

Physiological basis for a cochlear prosthesis

  • Published:
Archives of oto-rhino-laryngology Aims and scope Submit manuscript

Summary

For the attempt to develop a cochlear prosthesis, which allows some understanding of speech, it seems — at least for the first attempts — to be appropriate to mimic natural conditions as far as possible. The auditory nerve contains about 30000 afferent fibres. Qualitatively, their behavior is similar but quantitative measures show considerable differences (2.3). Nothing certain can be said at present however about the spiral fibres originating from the outer hair cells. The quantitative differences between single afferents concern tuning, frequency selectivity, thresholds, intensity functions and — of particular interest for electrical stimulation — differences in timing of the activity pattern, brought about by differences in travelling time along the cochlear duct (2.3). The time differences seen in the activity pattern of different fibres are in the order of several ms (2.3.6; 2.3.7).

Actionpotentials elicited by natural acoustic stimuli show probabilistic behavior, that is they are not strictly determined.

It is obvious that with artificial electrical stimulation not every surviving single fibre can be selectively stimulated. An electrode will always stimulate a group of fibres simultaneously. With any conceivable electrical stimulation all fibres in the suprathreshold region of the electrode will be synchronously activated (3.2); a fundamental difference to the natural situation.

To estimate the number of channels, necessary to stimulate the auditory nerve with sufficient accuracy to allow speech perception we consider some psychoacoustic data. These have shown that the auditory system possesses the ability to differentiate a great number of different pitches, but on the other hand it is capable of integrating different frequency areas to a so called critical bandwidth. Sound energy falling into one critical bandwidth is integrated to a uniform auditory sensation. If one is to integrate various fibres of the auditory nerve to one channel of stimulation it seems to be adequate to use the critical bandwidth as a measure (3.1). According to this criterion 15 channels would have to be introduced into the speech region of the cochlea. This would allow 1.2 mm of cochlear length for each channel. Perfect electrical separation of the channels is required.

Considering the severe distortions in neuronal activity pattern, introduced by electrical stimulation in comparison to the natural conditions it is not clear even whether the number given would be sufficient. On the other hand, current spreading would appear to prohibit any higher electrode density.

As far as coding of sound parameters within one channel is concerned it is proposed that full use should be made of frequency analysis according to the place principle. In respect to coding of periodicity and loudness it is proposed to approach natural conditions as far as possible (3.3). Here delay times between the individual channels and a probabilistic character of the stimuli should be introduced to avoid dominance of periodicity pitch.

An auditory prosthesis capable of transmitting speech is conceivable only if the information transfer necessary for transmission of speech is sufficient. Results from channel-vocoder techniques show that speech can be transmitted with satisfaction if the capacity is 1500 bit/s. An estimate of the performance of a 15-channel prosthesis, based on possible difference limen of auditory sensation indicates that the necessary capacity could just be realised (3.4). Unfortunately this does not necessarily mean that the central nervous system will really make use of the information available in the sense of speech analysis. Only in this case would an understandable percept result.

The cochlea seems to be an adequate location for electrical stimulation (5.1). In case of degeneration of the bulk of primary afferent fibres, on the base of physiological considerations we would like to suggest the ventral cochlear nucleus as an appropriate locus (5.5), but only the ventral auditory pathway would thus be stimulated. It should be admitted however that other places also possess their specific advantages (5.2–5.4).

Theoretical considerations (6.1) and measurements based on implanted electrodes (6.3) show, that the required separation of channels can only be achieved with difficulty. Data from the literature indicate that the dynamic range (in respect to variation of the stimulus current) will be 3 dB at its best, at least for a 15-channel device. Spread of excitation along the basilar membrane should be mimicked by adding stimulation to neighbouring channels. The delay times occurring under normal conditions should be introduced.

The chances to realise a cochlear prosthesis based on “quasi natural” electrical stimulation of the auditory nerve and sufficient for speech transmission, are estimated to be very low. This conclusion is drawn from the numerous difficulties described. We think however that research should procede, this opinion being motivated by the enormous profit that could be gained.

It is proposed to investigate whether preprocessed speech may be used with better prospects for artificial stimulation (7.). For prosthetic devices not aimed for intelligibility of speech we think an intracochlear implant is unnecessary. For these purposes the round window electrodes, proposed by Douek et al. (1977) und Fourcin et al. (1978) seem to be superior as there is less risk.

Zusammenfassung

Im Bemühen, eine Hörprothese zu entwickeln, die ein Sprachverständnis erlaubt, erscheint es zumindest fürs erste am zweckmäßigsten, durch künstliche elektrische Reizung des Hörnerven die natürlichen Verhältnissen so gut als möglich zu imitieren. Der normale Hörnerv enthält etwa 30000 Nervenfasern, die sich qualitativ gleich, quantitativ jedoch unterschiedlich verhalten, wobei über die Eigenschaften der von den ÄHZ kommenden Spiralfasern im Augenblick sichere Aussagen nicht möglich sind (siehe 2.3). Die quantitativen Unterschiede zwischen den einzelnen Hörnervenfasern beziehen sich auf deren Frequenzabstimmung, Frequenzselektivität, Schwellen, Intensitätsfunktionen und — wichtig insbesondere für das Vorhaben einer künstlichen elektrischen Reizung — in Zeitunterschieden in den Aktivitätsmustern, die durch Laufzeitunterschiede auf der Basilarmembran bedingt sind (2.3). Diese Zeitunterschiede in der Aktivität einzelner Fasern liegen im Bereich mehrerer ms (2.3.6; 2.3.7). Die durch Schallreize im normalen Hörnerven ausgelösten Aktionspotentiale haben überdies einen probabilistischen Charakter, d. h. ihr Auftreten ist keineswegs streng determiniert. Es versteht sich von selbst, daß man bei künstlicher, elektrischer Reizung nicht alle verbliebenen Nervenfasern selektiv reizen kann. Somit wird eine Reizelektrode immer eine Gruppe von Nervenfasern erregen müssen. Bei jeder denkbaren elektrischen Reizung wären alle Fasern im Reizbereich einer Elektrode synchron und streng deterministisch aktiviert, was einen außerordentlich ernstzunehmenden Unterschied zu natürlichen Verhältnissen darstellt (3.2).

Um die Zahl der zum Sprachverständnis mindestens notwendigen Reizkanäle abzuschätzen, wird man, in Ermangelung anderer experimenteller Daten, von psychoakustischen Untersuchungen an Normalhörenden auszugehen haben. Diese haben gezeigt, daß das Gehör neben einer außerordentlichen Fähigkeit verschiedene Tonhöhen zu unterscheiden, andererseits die Fähigkeit besitzt, bestimmte Frequenzgebiete zu sogenannten Frequenzgruppen zu integrieren. Die in eine solche Frequenzgruppe fallende Schallenergie wird zu einem einheitlichen Höreindruck verarbeitet. Es scheint also sinnvoll, die für einen Prothesenbau notwendige Zusammenfassung von Gruppen von Fasern des Hörnerven in verschiedene Reizkanäle entsprechend diesen Frequenzgruppen vorzunehmen (3.1). Demnach müßte der Sprachbereich in 15 Reizkanäle aufgeteilt werden, was wiederum, wenn man in der Cochlea reizen will, 1,2 mm Abstand von Kanal zu Kanal erlauben würde. Dabei müßte der Reizerfolg sauber auf die einzelnen Kanäle beschränkt bleiben, d.h. eine optimale Kanaltrennung erreicht werden. In Anbetracht der groben Abweichungen der neuronalen Aktivität vom normalen Verhalten, die bei künstlicher, elektrischer Reizung unvermeidlich sind, ist freilich unsicher, ob die angegebene Zahl ausreichen würde. Andererseits ist es in Anbetracht der zu erwartenden Stromverteilung im Sprachbereich kaum vorstellbar, mehr als die angegebene Zahl von Kanälen realisieren zu können.

Was die Kodierung der Schallparameter innerhalb eines Elektrodenkanals betrifft, wird vorgeschlagen, die Frequenzkodierung nach dem Ortsprinzip optimal auszunutzen, und im Hinblick auf die Periodizitätsanalyse und die Lautheitskodierung sich soweit als möglich den natürlichen Verhältnissen anzunähern (3.3). Dabei wären Laufzeitunterschiede zwischen den Kanälen und der probabilistische Charakter der neuronalen Entladungen soweit als möglich einzuführen, um die Dominanz eines periodicity pitch zu vermeiden.

Eine für Sprachverständnis ausreichende Prothese ist auch nur denkbar, wenn eine Prothese die zur Sprachübertragung notwendige Übertragungskapazität besitzt. Ergebnisse der Kanal-Vocoder-Technik zeigen, daß Sprache noch mit 1500 bit/s befriedigend übertragen werden kann. Eine Abschätzung der möglichen Leistungsfähigkeit einer 15-kanaligen Prothese (3.4), basierend auf der Zahl der möglichen unterscheidbaren Unterschiedsstufen der Hörempfindung, ergibt, daß diese Übertragungskapazität knapp erreicht werden könnte. Allerdings ist damit noch nicht gesagt, daß das Zentralnervensystem die angebotene Information auch im Sinne einer Phonemanalyse auswertet und damit für ein Sprachverständnis maximal ausschöpft. Nur für diesen Fall wäre ein Sprachverständnis zu erwarten.

Als Reizort erscheint in erster Linie die Cochlea (5.1) geeignet. Für den Fall einer Degeneration der primären afferenten Fasern des Hörnerven ist aufgrund physiologischer Überlegungen auch der Nucleus cochlearis ventralis (5.5) interessant, allerdings würde so nur der ventrale Anteil der Hörbahn stimuliert. Doch besitzen auch andere Reizorte spezifische Vorteile (5.2–5.4).

Theoretische Überlegungen (6.1) und experimentelle Messungen an implantierten Elektrodensätzen (6.3) zeigen, daß die Forderung der Kanaltrennung nur schwer zu erreichen sein wird. Deswegen wird der dynamische Bereich (im Hinblick auf Veränderung des Reizstromes) eines nach den obigen Kriterien konstruierten Reizkanals auf maximal 3 dB zu beschränken sein, so daß Erregungsausbreitung auf weitere Bereiche der Cochlea durch Ansteuerung von mehreren Reizkanälen zu imitieren wäre.

Die Chancen, eine Prothese zu verwirklichen, die befriedigendes Sprachverständnis auf der Basis einer „quasinatürlichen“ Reizung des Hörnerven erlaubt, wird von uns in Anbetracht der geschilderten mannigfaltigen Schwierigkeiten als sehr niedrig angesehen. In Anbetracht des großen Nutzens, der andererseits eventuell resultieren könnte, halten wir die Erforschung des Problems jedoch für angebracht.

Es wird von uns vorgeschlagen, auch zu untersuchen, ob sich für eine prothetische Versorgung vorverarbeitete Sprache besser eignet (7.). Für Prothesen, die ein Sprachverständnis nicht anstreben, halten wir eine Implantation in die Cochlea für überflüssig. Hier erscheint uns die Implantation von Reizelektroden am runden Fenster (Douek et al., 1977; Fourcin et al., 1978; s. a. 1. und 7.) wegen des geringeren Risikos der überlegenere Weg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aitkin, L. M.: Tonotopic organization at higher levels of the auditory pathway. International Review of Physiology. Neurophysiology II, 249–273 (1976)

    Google Scholar 

  • Anderson, D. J., Rose, J. E., Hind, J. E., Brugge, J. F.: Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J. Acoust. Soc. Am. 49, 1131–1139 (1971)

    Google Scholar 

  • Aran, J. M.: The electrocochleogram: recent results in children and in some pathological cases. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 198, 128–141 (1971)

    Google Scholar 

  • Arnesen, A. R., Osen, K. K.: The cochlear nerve in the cat: topography, cochleotopy and fiber spectrum. J. Comp. Neurol. 178, 661–678 (1978)

    Google Scholar 

  • Arnold, W., Funk, W.: Modellelektroden zur multi-axonalen Reizung des N. cochlearis. 15. Arbeitstagung für Innenohrbiologie, Seefeld/Innsbruck 1978

  • Ballantyne, J. C., Evans, E. F., Morrison, A. W.: Electrical auditory Stimulation in the management of profound hearing loss. J. Laryngol. Otol. [Suppl.] 1, 1–117 (1978)

    Google Scholar 

  • Banfai, P.: Zugangswege für das Cochlear Implant. HNO 26, 85–89 (1978)

    Google Scholar 

  • Von Békésy, G.: Experiments in hearing. New York: McGraw-Hill 1960

    Google Scholar 

  • Bilger, R. C.: Electrical stimulation of the auditory nerve and auditory prostheses: a review of the literature. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 11–20 (1977)a

    Google Scholar 

  • Bilger, R. C.: Psychoacoustic evaluation of present prostheses. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 92–140 (1977)b

    Google Scholar 

  • Bilger, R. C., Black, F. O.: Auditory prostheses in perspective. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 3–10 (1977)

    Google Scholar 

  • Bilger, R. C., Black, F. O., Hopkinson, N. T.: Research plan for evaluating subjects presently fitted with implanted auditory prostheses. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 21–24 (1977)a

    Google Scholar 

  • Bilger, R. C., Black, F. O., Hopkinson, N. T., Myers, E. N., Payne, J. L., Stenson, N. R., Vega, A., Wolf, R. V.: Evaluation of subjects presently fitted with implanted auditory prostheses. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 1–176 (1977)c

    Google Scholar 

  • Bilger, R. C., Black, F. O., Hopkinson, N. T., Myers, E. N.: Implanted auditory prosthesis: an evaluation of subjects presently fitted with cochlear implants. Trans. Am. Acad. Ophthalmol. Otolaryngol. 84, 677–682 (1977)b

    Google Scholar 

  • Bilger, R. C., Hopkinson, N. T.: Hearing performance with the auditory prosthesis. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 76–91 (1977)

    Google Scholar 

  • Bilger, R. C., Stenson, N. R., Payne, J. L.: Subject acceptance of implanted auditory prosthesis. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 165–176 (1977)d

    Google Scholar 

  • Bilsen, F. A.: Pitch of noise signals: evidence for a “central spectrum”. J. Acoust. Soc. Am. 61, 150–161 (1977)

    Google Scholar 

  • Black, F. O.: Present vestibular status of subjects implanted with auditory prostheses. Ann. Otol. Rhinol. Larnygol. 86, [Suppl. 38] 49–56 (1977)a

    Google Scholar 

  • Black, F. O.: Effects of the auditory prosthesis on postural stability. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 141–164 (1977)b

    Google Scholar 

  • Black, R. C., Clark, G. M.: Electrical transmission line properties of the cat cochlea. Proceedings of The Australian Physiological and Pharmacological Society 8, 137 (1977)

    Google Scholar 

  • Black, R. C., Clark, G. M.: Electrical network properties and distribution of potentials in the cat cochlea. Proceedings of the Australian Physiological and Pharmacological Society 9, 71 (1978)

    Google Scholar 

  • Black, F. O., Myers, E. N.: Present otologic status of subjects implanted with auditory prostheses. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 25–39 (1977)

    Google Scholar 

  • Blauert, J., Laws, P.: Group delay distortions in electroacoustical systems. J. Acoust. Soc. Am. 63, 1478–1483 (1978)

    Google Scholar 

  • de Boer, E., Kuyper, P.: Triggered correlation. IEEE Trans. Biomed. Eng. 15, 169–179 (1968)

    Google Scholar 

  • Brackmann, D. E.: The cochlear implant: basic principles. Laryngoscope 86, 373–388 (1976)

    Google Scholar 

  • Brugge, J. F., Anderson, D. J., Hind, J. E., Rose, J. E.: Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. J. Neurophysiol. 32, 386–401 (1969)

    Google Scholar 

  • Brummer, S. B., McHardy, J.: Current problems in electrode development. In: Functional electrical stimulation. Hambrecht, F. T., Reswick, J. B. (eds.), pp. 499–514. New York, Basel: Marcel Dekker Inc. 1977

    Google Scholar 

  • Brummer, S. B., Turner, M. J.: Electrochemical considerations for safe electrical stimulations of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. BME. 24 (1), 59–63 (1977)

    Google Scholar 

  • Buder, D.: Vocoder für Sprachverfremdung und Klangeffekte. Funkschau, Heft 7, 293–297 (1978)

    Google Scholar 

  • Carhart, R.: Minimum Stimulation requirements for intelligibility. In: Electrical Stimulation of the acoustic nerve in man. Merzenich, M. M., Schindler, R. A., Sooy, A. F. (eds.). p. 171–178. San Francisco, Calif.: Velo-Bind, Inc. 1974

    Google Scholar 

  • Chouard, C.-H.: Multiple intracochlear electrodes for rehabilitation in total deafness. Otolaryngol. Clin. North Am. 11, 217–233 (1978)

    Google Scholar 

  • Chouard, C. H., MacLeod, P.: Implantation of multiple intracochlear electrodes for rehabilitation of total deafness: Preliminary report. Laryngoscope 86, 1743–1751 (1975)

    Google Scholar 

  • Chouard, C.-H., MacLeod, P. M., Meyer, B., Pialoux, P.: Appareillage électronique implanté chirurgicalement pour la réhabilitation des surdités totales et des surdi-mutités. Ann. Otolaryngol. Chir. Cervicofac. 94, 353–363 (1977)

    Google Scholar 

  • Chouard, C.-H., MacLeod, P. M., Meyer, B., Fugain, C., Pialoux, P.: Réhabilitation chirugicale des surdités totales et des surdi-mutités. Ann. Otolaryngol. Chir. Cervicofac. 95, 3–18 (1978)

    Google Scholar 

  • Clark, G. M.: Responses of cells in the superior olivary complex of the cat to electrical stimulation of the auditory nerve. Exp. Neurol. 24, 124–136 (1969)

    Google Scholar 

  • Clark, G. M.: A hearing prosthesis for severe perceptive deafness. Experimental studies. J. Laryngol. Otol. 87, 929–945 (1973)

    Google Scholar 

  • Clark, G. M.: A surgical approach for a cochlear implant: An anatomical study. J. Laryngol. Otol. 89, 9–15 (1975)

    Google Scholar 

  • Clark, G. M.: An evaluation of per-scalar cochlear electrode implantation techniques (an histopathological study in cats). J. Laryngol. Otol. 91, 185–199 (1977)

    Google Scholar 

  • Clark, G. M., Black, R., Dewhurst, D. J., Forster, I. C., Patrick, J. F., Tong, Y. C.: A multiple-electrode hearing prosthesis for cochlear implantation in deaf patients. Med. Progr. Technol. 5, 127–140 (1977)a

    Google Scholar 

  • Clark, G. M., Hallworth, R. J.: A multiple-electrode array for a cochlear implant. J. Laryngol. Otol. 90, 623–627 (1976)

    Google Scholar 

  • Clark, G. M., Hallworth, R. J., Zdanius, K.: A cochlear implant electrode. J. Laryngol. Otol. 89, 787–792 (1975)a

    Google Scholar 

  • Clark, G. M., Kranz, H. G., Minas, H.: Behavioral thresholds in the cat to frequency modulated sound and electrical stimulation of the auditory nerve. Exp. Neurol. 41, 190–200 (1973)

    Google Scholar 

  • Clark, G. M., Kranz, H. G., Minas, H., Nathar, J. M.: Histopathological findings in cochlear implants in cats. J. Laryngol. Otol. 89, 495–504 (1975)b

    Google Scholar 

  • Clark, G. M., Nathar, J. M., Kranz, H. G., Maritz, J. S.: A behavioral study on electrical stimulation of the cochlea and central auditory pathways of the cat. Exp. Neurol. 36, 350–361 (1972)

    Google Scholar 

  • Clark, G. M., O'Loughlin, B. J., Rickards, F. W., Tong, Y. C., Williams, A. J.: The clinical assessment of cochlear implant patients. J. Laryngol. Otol. 91, 697–708 (1977)b

    Google Scholar 

  • Clark, G. M., Patrick, J. F., Bailey, Q.: A cochlear implant round window electrode array. J. Laryngol. Otol. 93 (in press) (1979)

  • Clark, G. M., Tong, Y. C., Black, R., Forster, I. C., Patrick, J. F., Dewhurst, D. J.: A multiple electrode cochlear implant. J. Laryngol. Otol. 91, 935–945 (1977)c

    Google Scholar 

  • Comis, S. D., Guth, P. S.: The release of acetylcholine from the cochlear nucleus upon stimulation of the crossed olivo-cochlear bundle. Neuropharmacology 13, 633–641 (1974)

    Google Scholar 

  • Dallos, P., Ryan, A., Harris, D., McGee, T., Özdamar, Ö.: Cochlear frequency selectivity in the presence of hair cell damage. In: Psychophysics and physiology of hearing. Evans, E. F., Wilson, J. P. (eds.), pp. 249–258. London: Academic Press 1977

    Google Scholar 

  • Dillier, N.: Entwicklung und klinische Evaluation einer Gehörsprothese für sensorisch taube Patienten basierend auf der elektrischen Stimulation des achten Nervs. Abhandlung zur Erlangung des Titels eines Doktors der Technischen Wissenschaften der Eidgenössischen Techn. Hochschule, Zürich, 1978

  • Dillier, N., Spillmann, T.: Ergebnisse der elektrischen Stimulation beim Normalhörenden, Schwerhörigen und Gehörlosen. In: Aktuelle Probleme der Otorhinolaryngologie 1. Verhandlungsberichte der wissenschaftlichen Frühjahrsversammlung der Schweizerischen Ges. für Otorhinolaryngologie, Hals- und Gesichtschirurgie, Juni 1977. Kellerhals, B., Fisch, U., Mann, J., Montandon, P., de Reynier, J. P., Secrétan, J. P. (Hrsg.), S. 166–176. Bern, Stuttgart, Wien: Hans Huber Verlag

    Google Scholar 

  • Dillier, N., Spillmann, T.: Elektrische Stimulation des Gehörs beim Menschen: Übersicht über den aktuellen Stand der Entwicklung einer implantierbaren Prothese für sensorisch neurale Taubheit. HNO 26, 77–84 (1978)

    Google Scholar 

  • Dobelle, W. H., Mladejovsky, M. G.: The directions for future research on sensory prostheses. Trans. Am. Soc. Artif. Intern. Organs 20, 425–429 (1974)

    Google Scholar 

  • Dobelle, W. H., Stensaas, S. S., Mladejovsky, M. G., Smith, J. B.: A prosthesis for the deaf based on cortical stimulation. Ann. Otol. Rhinol. Laryngol. 82, 445–463 (1973)

    Google Scholar 

  • Douek, E., Fourcin, A. J., Moore, B. C. J., Clarke, G. P.: A new approach to the cochlear implant. Proc. R. Soc. Med. 70, 379–383 (1977)

    Google Scholar 

  • Doyle, J. H., Doyle, J. B., Turnbull, F. M.: Electrical stimulation of eight cranial nerve. Arch. Otolaryngol. 80, 388–391 (1964)

    Google Scholar 

  • Dudel, J.: Erregung von Nerv und Muskel. In: Physiologie des Menschen, 19. Auflage. Schmidt, R. F., Thews, G. (Hrsg.), S. 7–32. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Dymond, A. M.: Characteristics of the metal-tissue interface of stimulation electrodes. IEEE Trans. Biomed. Eng. BME 23, 274–280 (1976)

    Google Scholar 

  • Ebbecke, U.: Johannes Müller, der große rheinische Physiologe. Hannover: Schmorl und v. Seefeld 1951

    Google Scholar 

  • Eddington, D. K., Dobelle, W. H., Brackmann, D. E., Mladejovsky, M. G., Parkin, J.: Place and periodicity pitch by stimulation of multiple scale tympani electrodes in deaf volunteers. Trans. Am. Soc. Artif. Intern. Organs 24, 1–5 (1978)a

    Google Scholar 

  • Eddington, D. K., Dobelle, W. H., Brackmann, D. E., Mladejovsky, M. G., Parkin, J. L.: Auditory prostheses research with multiple channel intracochlear stimulation in man. Ann. Otol. Rhinol. Laryngol. 87 [Suppl. 53], 5–39 (1978)b

    Google Scholar 

  • Evans, E. F.: The effects of hypoxia on the tuning of single cochlear nerve fibres. J. Physiol. 238, 65–67 (1974)

    Google Scholar 

  • Evans, E. F.: Cochlear nerve and cochlear nucleus. In: Handbook of sensory physiology. Vol. V/2. Keidel, W. D., Neff, W. D. (eds.), pp. 1–108. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Evans, E. F.: Peripheral auditory processing in normal and abnormal ears: Physiological considerations for attempts to compensate for auditory deficits by acoustic and electrical prostheses. Sensorineural hearing impairment and hearing aids. Ludvigsen, C, Bradfod, J. (eds.). Scand. Audiol. Suppl. 6, 9–47 (1978)a

  • Evans, E. F.: Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17, 369–420 (1078)b

    Google Scholar 

  • Evans, E. F., Klinke, R.: Reversible effects of cyanide and furosemide on the tuning of single cochlear nerve fibres. J. Physiol. 242, 129–130P (1974)

    Google Scholar 

  • Evans, E. F., Palmer, A. R.: Responses of units in the cochlear nerve and nucleus of the cat to signals in the presence of bandstop noise. J. Physiol. (Lond.) 252, 60–62 (1975)

    Google Scholar 

  • Evans, E. F., Wilson, J. P.: Frequency selectivity of the cochlea. In: Basic mechanisms of hearing. Møller (ed.), pp. 519–551. New York: Academic Press 1973

    Google Scholar 

  • Flanagan, J. L.: Speech analysis synthesis and perception. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Flock, A.: Sensory transduction in hair cells. In: Handbook of sensory physiology, I. Löwenstein, W. R. (ed.), p. 396–441. Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  • Fisher, S. K., Davies, W. E.: Gaba and its related enzymes in the lower auditory system of the guinea pig. J. of Neurochem. 27, 1145–1155 (1976)

    Google Scholar 

  • Fourcin, A. J., Rosen, S. M., Moore, B. C. J., Douek, E. E., Clarke, G. P., Dodson, H., Bannister, L. H.: External electrical stimulation of the cochlea. Speech and hearing. Progress Report from the Department of Phonetics, University College, London 1978

    Google Scholar 

  • Fredrickson, C. J., Gerken, G. M.: Functional characteristics of cochlear nucleus in behaving cat examined by acoustic masking of electrical stimuli. J. Neurophysiol. 41, 1535–1545 (1978)

    Google Scholar 

  • Giordano, Th. A., Rothman, H. B., Hollien, H.: Helium speech unscrablers. A critical review of the state of the art. IEEE Transactions on Audio and Electroacoustics, AU-21, 436–445 (1973)

    Google Scholar 

  • Glattke, Th. J.: Cochlear implants: Technical and clinical implications. Laryngoscope 86, 1351–1358 (1976)

    Google Scholar 

  • Goldstein, J. L.: Mechanisms of signal analysis and pattern perception in periodicity pitch. Audiology 17, 421–445 (1978)

    Google Scholar 

  • Graham, J. M., Hazell, J. W. P.: Electrical stimulation of the human cochlea using a transtympanic electrode. British Journal of Audiology 11, 59–62 (1977)

    Google Scholar 

  • Greenwood, D. D.: Empirical travel time functions on the basilar membrane. In: Psychophysics and physiology of hearing. Evans, E. F., Wilson J. P. (eds.), p. 43–55. London: Academic Press 1977

    Google Scholar 

  • Hambrecht, F. T., Reswick, J. B. (eds.): Functional electrical stimulation. New York, Basel: Marcel Dekker, Inc. 1977

    Google Scholar 

  • Harrison, R. V., Evans, E. F.: The effect of hair cell loss (restricted to outer hair cells) on the threshold and tuning properties of cochlear fibres in the guinea pig. In: Inner ear biology. Portmann, M., Aran, J.-M. (eds.). p. 105–124. Paris: INSERM 1977

    Google Scholar 

  • Hashimoto, T., Katayama, Y., Murata, K., Taniguchi, I.: Pitch-synchronous response of cat cochlear nerve fibers to speach sounds. Jpn. J. Physiol. 25, 633–644 (1975)

    Google Scholar 

  • Hind, J. E., Anderson, D. J., Brugge, J. F., Rose, J. E.: Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 794–816 (1967)

    Google Scholar 

  • Hopkinson, N. T., Bilger, R. C., Black, F. O.: Present audiologic status of subjects implanted with auditory prostheses. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 40–48 (1977)

    Google Scholar 

  • House, W. F.: Goals of the cochlear implant. Laryngoscope 84, 1883–1887 (1974)

    Google Scholar 

  • House, W. F.: Cochlear implants. Ann. Otol. Rhinol. Laryngol. [Suppl. 27] 85, 1–93 (1976)

    Google Scholar 

  • House, W. F.: The clinical value of single electrode systems in auditory prostheses. Otolaryngol. Clin. North. Am. 11, 201–208 (1978)

    Google Scholar 

  • House, W. F., Brackmann, D. E.: Electrical promontory testing in differential diagnosis of sensoryneural hearing impairment. Laryngoscope 84, 2163–2171 (1974)

    Google Scholar 

  • House, W. F., Urban, J.: Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann. Otol. Rhinol. Laryngol. 82, 504–517 (1973)

    Google Scholar 

  • Jako, G. J.: Electrical stimulation of the human cochlea and the flexible multichannel intracochlear electrode. Otolaryngol. Clin. North Am. 11, 235–40 (1978)

    Google Scholar 

  • Javel, E., Geisler, C. D., Ravindran, A.: Two-tone suppression in auditory nerve of the cat: Rate-intensity and temporal analyses. J. Acoust. Soc. Am. 63, 1093–1104 (1978)

    Google Scholar 

  • Johnsson, L.-G., House, W. F.: Bilateral cochlear implants, histological findings in a pair of temporal bones. 81st Annual Meeting of the Amer. Laryng. Rhinol. and Otol. Society Inc. 1978

  • Johnstone, B. M., Johnstone, J. R., Pugsley, I. D.: Membrane resistance in endolymphatic walls of the first turn of the guinea-pig cochlea. J. Acoust. Soc. Am. 40, 1398–1404 (1966)

    Google Scholar 

  • Jones, R. C., Stevens, S. S., Lurie, M. H.: Three mechanisms of hearing by electrical stimulation. J. Acoust. Soc. Am. 12, 281–290 (1940)

    Google Scholar 

  • Kauffmann, G., Achilles, A.: Conditions for the spread of potentials in the electrically stimulated cochlea or acoustic nerve. Fourth Annual Meeting, European Society for Artificial Organs, pp. 445–453. Vol. 4, London 1977

    Google Scholar 

  • Kauffmann, G., Hieke, D.: Untersuchungen zur Stromausbreitung in Nervquerschnitten. In: Symposium 1976 Special Research Area 88 Teratological Research and Rehabilitation of Patients with Multiple Handicaps and Conference on Electrocochleography and Holography in Medicine. Vol. 1 (1976), Hoke, M., von Bally, G. (Eds.), pp. 55–62, Münster

  • Kiang, N. Y. S., Eddington, D. K., Delgutte, B.: Fundamental considerations in designing auditory implants. Acta Otolaryngol. (1978) (in press)

  • Kiang, N. Y. S., Liberman, M. Ch., Levine, R. A.: Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann. Otol. Rhinol. Laryngol. 85, 752–769 (1976)

    Google Scholar 

  • Kiang, N. Y. S., Moxon, E. C.: Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. 81, 714–730 (1972)

    Google Scholar 

  • Kiang, N. Y. S., Moxon, E. C.: Tails of tuning curves of auditory-nerve fibers. J. Acoust. Soc. Am. 55, 620–630 (1974)

    Google Scholar 

  • Kiang, N. Y. S., Moxon, E. C., Levine, R. A.: Auditory-nerve activity in cats with normal and abnormal cochleas. In: Sensorineural hearing loss. Wolstenholme, G. E. W., Knight, J., pp. 241–273. London: Churchill 1970

    Google Scholar 

  • Kiang, N. Y. S., Watanabe, T., Thomas, E. C., Clark, L. F.: Discharge patterns of single fibers in the cat's auditory nerve. Research Monograph No. 35, pp. 1–154. Cambridge/Mass.: M.I.T. Press 1965

    Google Scholar 

  • Kim, D. O., Molnar, C. E.: A population study of cochlear nerve fibers: comparison of the spatial distributions of average-rate and phase-locking measures of responses to single tones. J. Neurophysiol. (in press) (1979)a

  • Kim, D. O., Molnar, C. E.: Studies of cochlear nonlinearity. Workshop on Models of the Auditory System and related signal processing techniques, Münster, 1979 (in press) b

  • Klinke, R.: Physiologie des Hörens I. In: Physiologie des Menschen, Band 12. Gauer, Kramer, Jung (Hrsg.), S. 10–55. München, Berlin, Wien: Urban & Schwarzenberg 1972

    Google Scholar 

  • Klinke, R.: Physiologie des Gleichgewichtssinnes, des Hörens und des Sprechens. In: Physiologie des Menschen, 19. Auflage. Schmidt, R. F., Thews, G. (Hrsg.), S. 263–287. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Klinke, R.: Frequency analysis in the inner ear of mammals in comparison to other vertebrates. Verh. Dtsch. Zool. Ges. 1978, p. 1–15. Stuttgart: G. Fischer 1978

    Google Scholar 

  • Klinke, R., Evans, E. F.: Evidence that catecholamines are not the afferent transmitter in the cochlea. Exp. Brain Res. 28, 315–324 (1977)

    Google Scholar 

  • Klinke, R., Galley, N.: Efferent innervation of vestibular and auditory receptors. Physiol. Rev. 54, 316–357 (1974)

    Google Scholar 

  • Konishi, T., Nielsen, D. W.: The temporal relationship between basilar membrane motion and nerve impulse initiation in auditory nerve fibers of guinea pigs. Jpn. J. Physiol. 28, 291–307 (1978)

    Google Scholar 

  • Liberman, M. Ch.: Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63, 442–455 (1978)

    Google Scholar 

  • Liberman, M. Ch., Kiang, N. Y. S.: Acoustic trauma in cats. (Cochlear pathology and audiotorynerve activity). Acta Otolaryngol. [Suppl.] (Stockh.) 358, 1–63 (1978)

    Google Scholar 

  • MacLeod, P. M., Pialoux, P., Chouard, C. H., Meyer, B.: frApercu physiologique de la réhabilitation des surdités totales par l'implantation d'électrodes multiples intra-cochléaires. Ann. Otolaryngol. (Paris) 92, 17–23 (1975)

    Google Scholar 

  • Merzenich, M. M., Reid, M. D.: Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77, 397–415 (1974)

    Google Scholar 

  • Merzenich, M. M., Michelson, R. P., Pettit, C. R., Schindler, R. A., Reid, M.: Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann. Otol. Rhinol. Laryngol. 82, 486–503 (1973)

    Google Scholar 

  • Merzenich, M. M., Schindler, D. N., White, M. W.: Feasibility of multichannel scala tympani stimulation. Laryngoscope 84, 1887–1893 (1974)

    Google Scholar 

  • Merzenich, M., Vivion, M., Leake-Jones, P., White, M.: Progress in development of implantable multielectrode scala tympani arrays for a cochlear implant prosthesis. In: Proceedings, Sensory Aids for the Deaf. Rochester, New York: (in press) 1978a

  • Merzenich, M. M., White, M. W.: Cochlear implant. The interface problem. Biomedical engineering and instrumentation: functional electrical stimulation 3, Hambrecht, F. T., Reswick, J. B. (eds.), pp. 321–340. New York: Dekker Inc. 1977

    Google Scholar 

  • Merzenich, M. M., White, M. W., Leake, P. A., Schindler, R. A., Michelson, R. P.: Further progress in the development of multichannel cochlear implants. Trans. Am. Acad. Ophthalmol. Otolaryngol. 84, 181–183 (1977)

    Google Scholar 

  • Merzenich, M. M., White, M., Vivion, M. C., Leake-Jones, P., Walsh, S.: Some considerations of multichannel electrical stimulation of the auditory nerve in the profoundly deaf; Interfacing electrode arrays with the auditory nerve array. Acta Otolaryngol. (in press) (1978)b

  • Michelson, R. P.: Electrical stimulation of the human cochlea. Arch. Otolaryngol. 93, 317–323 (1971)a

    Google Scholar 

  • Michelson, R. P.: The results of electrical stimulation of the cochlea in human sensory deafness. Ann. Otol. Rhinol. Laryngol. 80, 914–919 (1971)b

    Google Scholar 

  • Michelson, R. P., Merzenich, M. M., Pettit, C. R., Schindler, R. A.: A cochlear prosthesis: Further clinical observations. Preliminary results of physiological studies. Laryngoscope 83, 1116–1122 (1973)

    Google Scholar 

  • Michelson, R. P., Merzenich, M. M., Schindler, R. A., Schindler, D. N.: Present status and future development of the cochlear prosthesis. Ann. Otol. Rhinol. Laryngol. 84, 494–498 (1975)

    Google Scholar 

  • Miller, H. A., Harrison, D. C.: Biomedical electrode technology. Theory and practice. New York, London: Academic Press 1974

    Google Scholar 

  • Mladejovsky, M. G., Eddington, D. K., Dobelle, W. H., Brackmann, D. E.: Artificial hearing for the deaf by cochlear stimulation: Pitch modulation and some parametric thresholds. Trans. Amer. Soc. Artif. Intern. Organs 21, x (1975)

  • Moore, B. C. J.: Frequency difference limens for short-duration tones. J. Acoust. Soc. Am. 54, 610–619 (1973)

    Google Scholar 

  • Morgon, A., Gregoire, D., Romanet, Ph., Dien, Y., Basset, P.: Stimulations cochleaires avant implantation d'electrodes. J.F.O.R.L., 25, 455–456 (1976)

    Google Scholar 

  • Otte, J., Schuknecht, H. F., Kerr, A. G.: Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88, 1231–1246 (1978)

    Google Scholar 

  • Pialoux, P., Chouard, C. H., MacLeod, P.: Physiological and clinical aspects of the rehabilitation of total deafness by implantation of multiple intracochlear electrodes. Acta Otolaryngol. (Stockh.) 81, 436–441 (1976)

    Google Scholar 

  • Plomp, R.: Aspects of tone sensation, a psychophysical study. London, New York, San Francisco: Academic Press 1976

    Google Scholar 

  • Ranck, J. B.: Which elements are excited in electrical stimulation in mammalian central nervous system: A review. Brain Res. 98, 417–440 (1975)

    Google Scholar 

  • Robertson, D., Manley, G. A.: Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J. Comp. Physiol. 91, 363–375 (1974)

    Google Scholar 

  • Rose, J. E., Brugge, J. F., Anderson, D. J., Hind, J. E.: Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 769–793 (1967)

    Google Scholar 

  • Russell, I. J., Sellick, P. M.: Intracellular studies of hair cells in the mammalian cochlea. J. Physiol. 284, 261–290 (1978)

    Google Scholar 

  • Sachs, M. B., Abbas, P. J.: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am. 56, 1835–1847 (1974)

    Google Scholar 

  • Schaltenbrand, G., Wahren, W. (eds.): Atlas for stereotaxy of the human brain. Stuttgart: Thieme 1977

    Google Scholar 

  • Schindler, R. A.: The cochlear histopathology of chronic intracochlear implantation. J. Laryngol. Otol. 90, 445–457 (1976)

    Google Scholar 

  • Schindler, R. A., Merzenich, M. M.: Chronic intracochlear electrode implantation: cochlear pathology and acoustic nerve survival. Ann. Otol. Rhinol. Laryngol. 83, 202–215 (1974)

    Google Scholar 

  • Schindler, R. A., Merzenich, M. M., White, M. W., Bjorkroth, B.: Multielectrode intracochlear implants: nerve survival and stimulation patterns. Arch. Otolaryngol. 103, 691–699 (1977)

    Google Scholar 

  • Schouten, J. F.: The residue revisted. In: Frequency analysis and periodicity detection in hearing. Plomp, R., Smoorenburg, G. F. (eds.), pp. 41–58. Leiden: A. W. Sijthoff 1970

    Google Scholar 

  • Schuknecht, H. F.: Neuroanatomical correlates of auditory sensitivity and pitch discrimination in the cat. In: Neural mechanisms of the auditory and vestibular systems. Rasmussen, G. L., Windle, W. F. (eds.), pp. 76–90, Springfield, Ill.: C. C. Thomas 1960

    Google Scholar 

  • Simmons, F. B.: Electrical stimulation of the auditory nerve in man. Arch. Otolaryngol. 84, 2–54 (1966)

    Google Scholar 

  • Simmons, F. B.: Permanent intracochlear electrodes in cats, tissue tolerance and cochlear microphonics. Laryngoscope 77, 171–186 (1967)

    Google Scholar 

  • Simmons, F. B.: Cochlear implants. Arch. Otolaryngol. 89, 61–69 (1969)

    Google Scholar 

  • Simmons, F. B., Epley, J. M., Lummis, R. C., Guttman, N., Frishkopf, L. S., Harmon, L. D., Zwicker, E.: Auditory nerve: electrical stimulation in man. Science 148, 104–106 (1965)

    Google Scholar 

  • Simmons, F. B., Glattke, Th. J.: Some electrophysiological factors in volley-pitch perception by electrical stimulation. In: Sensorineural hearing loss. A Ciba Foundation Symposium. Wolstenholme, G. E. W., Knight, J. (eds.), pp. 225–240. London: Churchill 1970

    Google Scholar 

  • Simmons, F. B., Glattke, T. J.: Comparison of electrical and acoustical stimulation of the cat ear. Ann. Otol. Rhinol. Laryngol. 81, 731–738 (1972)

    Google Scholar 

  • Simmons, F. B., Linehan, J. A.: Observations on a single auditory nerve fiber over a six-week period. J. Neurophysiol. 31, 799–805 (1968)

    Google Scholar 

  • Simmons, F. B., Mathews, R. G., Walker, M. G., White, R. L.: A functioning multichannel auditory nerve stimulator: a preliminary report on two human volunteers. Acta Otolaryngol. (Stockh.) (in press) (1978)

  • Small, A. M.: Periodicity pitch. In: Foundations of modern auditory theory. Tobias, J. V. (ed.), p. 3. New York: Academic Press 1970

    Google Scholar 

  • Smoorenburg, G. F.: Combination tones and their origin. J. Acoust. Soc. Am. 52, 615–632 (1972)

    Google Scholar 

  • Sonn, M.: An artificial cochlea for the sensory deaf: Presurgical development. Journal of Auditory Research 14, 89–108 (1974)

    Google Scholar 

  • Sonn, M., Feist, W. M.: A prototype flexible microelectrode array for implant-prosthesis applications. Med. Biol. Eng. 12, 778–791 (1974)

    Google Scholar 

  • Spillmann, T., Dillier, N., Fisch, U.: Entwicklung und klinische Evaluation einer implantierbaren Cochlea-Elektrode. In: Aktuelle Probleme der Otorhinolaryngologie I. Kellerhals, B., Fisch, U., Mann, J., Montandon, P., de Reynier, J. P., Secrétan, J. P. (Hrsg.). Bern, Stuttgart, Wien: Verlag Hans Huber 1978

    Google Scholar 

  • Spoendlin, H.: Innervation densities in the cochlea. Acta Otolaryngol. 73, 235–248 (1972)

    Google Scholar 

  • Stevens, S. S., Jones, R. C.: The mechanism of hearing by electrical stimulation. J. Acoust. Soc. Am. 10, 261–269 (1939)

    Google Scholar 

  • Suzuki, J., Nakatsui, M.: Perception of speech uttered under high ambient pressure. Speech Communication, Proceed. of the Speech Communication Seminar, Stockholm 1974, Vol. 1. Gunnar Fant (ed.), p. 107–114. Stockholm: Almquist & Wiksell. New York: Wiley 1975

    Google Scholar 

  • Tasaki, I.: Nervous transmission. Springfield: Charles C. Thomas 1953

    Google Scholar 

  • Terhardt, E.: Zur Tonhöhenwahrnehmung von Klängen, I u. II. Acustica 26, 173–199 (1972)a

    Google Scholar 

  • Terhardt, E.: Pitch of pure tones: its relation to intensity. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), pp. 353–360. Berlin, Heidelberg, New York: Springer 1974b

    Google Scholar 

  • Thornton, A. R. D.: The technical aspects of cochlear implantation. In: Sensorineural hearing impairment and hearing aids. Ludvigsen, C., Barfod, J. (eds.). Scand. Audiol. Suppl. 6 (1978)

  • Thornton, A. R. D. (ed.): A review of artificial auditory stimulation. Report of the Medical Research Council's Working Group (in press) 1979

  • Tonndorf, J.: Shearing motion in scala media of cochlear models. J. Acoust. Soc. Am. 32, 238–244 (1960)

    Google Scholar 

  • Tonndorf, J.: Cochlear prostheses. Ann. Otol. Rhinol. Laryngol. [Suppl. 44] 86, 1–20 (1977)

    Google Scholar 

  • Vega, A.: Present neuropsychological status of subjects implanted with auditory prostheses. Ann. Otol. Rhinol. Laryngol. 86 [Suppl. 38] 57–60 (1977)

    Google Scholar 

  • Vernon, J.: Round window stimulation in man. In: Electrical stimulation of the acoustic nerve in man. Merzenich, M. M., Schindler, R. A., Sooy, A. F. (eds.), pp. 63–78. San Francisco, Calif.: Velo-Bind, Inc. 1974

    Google Scholar 

  • Walloch, R. A., Cowden, D. A.: Placement of electrodes for excitation of the eighth nerve. Arch. Otolaryngol. 100, 19–23 (1974)

    Google Scholar 

  • Walloch, R., DeWeese, D., Brummett, R., Vernon, J.: Electrical stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. 82, 473–485 (1973)

    Google Scholar 

  • Wandhöfer, A., Kauffmann, G.: Elektrische Reizung des Hörorgans. In: Symposium 1976: Sonderforschungsbereich 88, Teratologische Forschung und Rehabilitation Mehrfachbehinderter Arbeitstagung Elektrocochleographie und Holographie in der Medizin. Hoke, M., Bally, v. G. (eds.), 1, 1–11 (1976) Münster.

  • White, M.: Design considerations of a prosthesis for the profoundly deaf. Thesis, UC Berkely, 1978

  • White, M., Merzenich, M., Vivion, M.: A non-invasive recording technique for evaluating electrode and nerve function in cochleas implanted with a multi-channel electrode array. In: Proceedings, sensory aids for the deaf. Rochester, New York 1978 (in press)

  • White, R. L.: Integrated circuits and multiple electrode arrays. In: Electrical stimulation requirements for intelligibility. Merzenich, M. M., Schindler, R. A., Sooy, A. F. (eds.), pp. 199–208. San Francisco, Calif.: Velo-Bind, Inc. 1974

    Google Scholar 

  • Whitfield, I. C.: Central nervous processing in relation to spatio-temporal discrimination of auditory patterns. In: Frequency analysis and periodicity detection in hearing. Plomp, R., Smoorenburg, G. F. (eds.), pp. 136–146. Leiden: Sijthoff 1970

    Google Scholar 

  • Wigand, M. E., Thumfart, W., Berg, M., Schmidt, H.: Experimental grafting of the auditory nerve. Arch. Otolaryngol. 104, 325–328 (1978)

    Google Scholar 

  • Williams, A. J., Clark, G. M., Stanley, G. V.: Behavioural responses in the cat to simple patterns of electrical stimulation of the terminal auditory nerve fibres. Proceedings of the Australian Physiological and Pharmacological Society 5, 252 (1974)

    Google Scholar 

  • Williams, A. J., Clark, G. M., Stanley, G. V.: Pitch discrimination in the cat through electrical stimulation of the terminal auditory nerve fibers. Physiological Psychology 4, 23–27 (1976)

    Google Scholar 

  • Wolf, R. V., Bilger, R. C.: Electroacoustic measures of present prostheses. Ann. Otol. Rhinol. Laryngol. 86, [Suppl. 38] 61–69 (1977)

    Google Scholar 

  • Zöllner, F., Keidel, W. D.: Gehörvermittlung durch elektrische Erregung des Nervus acusticus. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 181, 216–223 (1963)

    Google Scholar 

  • Zwicker, E., Feldtkeller, R.: Das Ohr als Nachrichtenempfänger. 2. Auflage. Stuttgart: S. Hirzel Verlag 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Wir danken Frau Ursula Ackermann und Frau Ursel Müller-Planitz für Schreibarbeiten, Literaturbeschaffung und Zeichnungen.

Die zitierten eigenen Arbeiten der Autoren wurden mit Unterstützung der DFG durchgeführt (DFG-K1 219).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinke, R., Hartmann, R. Physiologische Grundlagen einer Hörprothese. Arch Otorhinolaryngol 223, 77–137 (1979). https://doi.org/10.1007/BF00455077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00455077

Key words

Schlüsselwörter

Navigation